
Second Edition

MT9810B

Optical Test Set

Remote Control

Operation Manual

Document No.: M-W1887AE-2.0

To ensure that the MT9810B Optical Test Set

is used safely, read the safety information in

the MT9810B Optical Test Set Manual first.

Keep this manual with the Optical Test Set.

Measurement Solutions

ANRITSU CORPORATION

ii

MT9810B Optical Test Set Remote Control

Operation Manual

28 June 2001 (First Edition)

1 July 2002 (Second Edition)

Copyright © 2001-2002, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of

the publisher.

The contents of this manual may be changed without prior notice.

iii

Trademark

Visual BASIC and Windows are registered trademarks of Microsoft

Corporation.

NI-488.2M and LabVIEW are registered trademark of National In-

struments Corporation.

iv

I

About This Manual
This manual describes the remote control of the MT9810B Optical Test Set.

This product can control the MT9810B and incorporate the measurement result

through the GPIB/RS-232C interface.

II

Table of Contents

About This Manual .. I

Section 1 Overview 1-1

1.1 Overview .. 1-2

1.2 Selecting the Interface Port 1-2
1.3 Channel Numbers of the Unit 1-2

Section 2 How to Connect 2-1

2.1 Connecting Device Using a GPIB Cable 2-2

2.2 Connecting a Device Using an RS-232C Cable 2-4
2.3 Default Value ... 2-8

Section 3 Specifications 3-1

3.1 GPIB Specifications ... 3-2
3.2 RS-232C Specifications ... 3-2

3.3 Device Message List .. 3-3

Section 4 Initial Setting............................... 4-1

4.1 Initialization of Bus by IFC Statement 4-3
4.2 Initialization of Message Exchange by DCL and

SDC Bus Commands... 4-5

4.3 Initialization of Devices by ∗ RST Command 4-7
4.4 Device States at Power-ON 4-8

Section 5 Listener Input Formats 5-1

5.1 Summary of Listener Input Program Message

Syntactical Notation ... 5-3
5.2 Program Message Functional Elements 5-7
5.3 Program Data Format .. 5-16

Section 6 Talker Output Format................. 6-1

6.1 Differences in Syntax between Listener Input Formats and

Talker Output formats .. 6-3
6.2 Response Message Functional Elements 6-4

III

Section 7 Common Commands 7-1

7.1 Classification of Supported
Commands and References 7-2

Section 8 Status Structure 8-1

8.1 IEEE 488.2 Standard Status Model 8-3

8.2 Status Byte Register .. 8-5
8.3 Enabling the SRQ .. 8-9
8.4 Standard Event Status Register 8-10

8.5 Queue Model ... 8-13
8.6 Extended Status Bytes .. 8-15

Section 9 Details on Device Messages 9-1

9.1 Main Frame .. 9-2

9.2 Optical Sensor ... 9-7
9.3 Light Source ... 9-22
9.4 Error Messages ... 9-25

Section 10 Program Example..................... 10-1

10.1 Precaution on Programming 10-2

10.2 Program Examples .. 10-3

Section 11 LabVIEW Drivers 11-1

11.1 Installation ... 11-2
11.2 Program Example .. 11-3
11.3 List of LabVIEW Drivers .. 11-6

11.4 Description of LabVIEW Driver Functions 11-7

IV.

1-1

This section outlines the remote control functions of the MT9810B Optical Test

Set.

1.1 Overview .. 1-2

1.2 Selecting the Interface Port .. 1-2

1.3 Channel Numbers of the Unit ... 1-2

Section 1 Overview

Section 1 Overview

1-2.

1.1 Overview
The MT9810B Optical Test Set can perform almost all operations remotely using

a computer. This product comes standardized with a GPIB interface port (IEEE

Std 488.2-1987) and an RS-232C interface port.

1.2 Selecting the Interface Port
The interface port is selected from the front panel of the MT9810B main unit.

The two ports cannot be used at the same time. Refer to the Section 2 "How to

Connect" for more details.

1.3 Channel Numbers of the Unit
Up to two units can be mounted on the MT9810B. There are commands that

specify the channel number to which the unit is mounted. The left channel is

Channel 1 and the right channel is Channel 2 as seen from the front.

Channel1 Channel2

2-1

This section explains how to connect GPIB and RS-232C cables between the

MT9810B Optical Test Set and external devices such as a host computer, per-

sonal computer, and printer. This section also explains how to set the interfaces

of the MT9810B.

2.1 Connecting Device Using a GPIB Cable 2-2

2.1.1 Setting the Interface for the Connection Port 2-2

2.1.2 Confirming and Setting the Address 2-3

2.2 Connecting a Device Using an RS-232C Cable 2-4

2.2.1 RS-232C Interface Signal Connection Diagrams........ 2-5

2.2.2 Setting the Interface of the Connection Port 2-7

2.2.3 Setting RS-232C Interface Conditions 2-7

2.3 Default Value .. 2-8

Section 2 How to Connect

Section 2 How to Connect

2-2

2.1 Connecting Device Using a GPIB Cable
The MT9810B has a GPIB cable connector mounted on the back panel. Be sure

to connect the GPIB cable before turning on the power.

A maximum of 15 devices, including a controller, can be connected to one sys-

tem. Connect these device in accordance with the conditions shown in the fol-

lowing figure.

GPIB
Connector

GPIB
Cable

Total cable length ≤20 m

Device-to-device cable length ≤4 m

Number of connectable devices <15

GPIB

2.1.1 Setting the Interface for the Connection Port
Set the interface of the connection port to GPIB. The setting method is shown

below.

(1) Select "Remote Interface" with the System key.

(2) Switch to "GPIB" with the Select key.

(3) Enter the setting by pressing the Enter key.

(2) Select(1) System

(Shift+Prmtr)

(3) Enter

2-3

2.1.2 Confirming and Setting the Address

Be sure to set the GPIB address of the MT9810B after turning on the power. Set

the address using the front panel with the MT9810B set to the local mode.

(1) Select "GPIB ADDRESS" with the System key.

(2) Specify the address with the ↑ and ↓ keys. (The input address range is from

0 to 30.)

(3) Enter the setting by pressing the Enter key.

(1) System

(Shift+Prmtr)

(3) Enter(2) ↓(2) ↑

2.1 Connecting Device Using a GPIB Cable

Section 2 How to Connect

2-4

2.2 Connecting a Device Using an RS-232C Cable
The MT9810B has an RS-232C connector mounted on the back panel.

NOTE:
RS-232C connectors are available in 9-pin and 25-pin types. The 9-pin

type is usually used for DOS/V personal computers, while the 25-pin type

is usually used for the NEC PC9801/PC9821 Series. Before purchasing

an RS-232C cable, check the type of the RS-232C connector on the exter-

nal device. The following two types of RS-232C cables are available as

application parts for this product.

¥ RS-232C cable (for 25-pin type personal computer)

Length = 1 m

(Personal computer side)(MT9810B side)

¥ RS-232C cable (for DOS/V personal computer)

(Personal computer side)(MT9810B side)

D-sub,
9-pin,
Female

D-sub,
9-pin,
Female

D-sub,
25-pin,
Male

D-sub,
9-pin,
Female

Length = 1 m

2-5

2.2.1 RS-232C Interface Signal Connection Diagrams

The following diagram shows the connection of RS-232C interface signals be-

tween the MT9810B and a personal computer.

GND

1 GND

2 SD

3 RD

4 RS

5 CS

6 DR

7 GND

8 CD

9 NC

10 NC

11 GND

12 NC

13 GND

14 GND

15 ST2

16 NC

17 RT

18 NC

19 NC

20 ER

21 NC

22 NC

23 NC

24 ST1

25 NC

GND

CD (NC) 1

RD 2

TD 3

DTR (NC) 4

GND 5

DSR (NC) 6

RTS 7

CTS 8

RI (NC) 9

Personal computerMT9810B

D-sub, 9-pin, female

D-sub, 25-pin, male

Connection to the external computer with a D-sub 25-pin interface

2.2 Connecting a Device Using an RS-232C Cable

Section 2 How to Connect

2-6

GND

(1 CD

(2 RD

(3 TD

(4 DTR

(5 GND

(6 DSR

(7 RTS

(8 CTS

(9 RI

GND

CD (NC) 1

RD 2

TD 3

DTR (NC) 4

GND 5

DSR (NC) 6

RTS 7

CTS 8

RI (NC) 9

Personal computerMT9810B

D-sub, 9-pin, female D-sub, 9-pin, female

Connection to the DOS/V personal computer

2-7

2.2.2 Setting the Interface of the Connection Port

Set the interface of the connection port to RS-232C. The setting method is shown

below.

(1) Select "Remote Interface" with the System key.

(2) Switch the interface to "RS-232C" with the Select key.

(3) Enter the setting by pressing the Enter key.

(2) Select(1) System

(Shift+Prmtr)

(3) Enter

2.2.3 Setting RS-232C Interface Conditions

Set the interface conditions for the RS-232C port of MT9810B to match the inter-

face conditions of the connected external device. The setting method is shown

below.

(1) Select the setting items with the System key.

(2) Specify the setting values with the Select key.

(3) Enter the setting by pressing the Enter key.

The setting items are shown in the Table 2-1.

Table 2-1

Item System key Setting value

Baud rate

Stop bit

Parity bit

Character length

RS-232C Baudrate

RS-232C StopBit

RS-232C ParityBit

RS-232C Character

1200/2400/4800/9600/14400/19200 bps

1/2 bit

ODD/EVEN/NONE

7/8 bit

2.2 Connecting a Device Using an RS-232C Cable

Section 2 How to Connect

2-8.

2.3 Default Value
The factory-set values are shown in the Table 2-2.

Table 2-2

Setting item Default value

Remote interface

GPIB address

RS-232C baud rate

RS-232C stop bit

RS-232C parity bit

RS-232C character length

GPIB

15

9600 bps

1 bit

Even

8 bits

3-1

This section explains the GPIB standard, RS-232C standard, and device message

list of the MT9810B Optical Test Set.

3.1 GPIB Specifications ... 3-2

3.2 RS-232C Specifications ... 3-2

3.3 Device Message List .. 3-3

3.3.1 IEEE 488.2 common commands and the commands

supported by the MT9810B... 3-5

3.3.2 Device Message List ... 3-6

Section 3 Specifications

Section 3 Specifications

3-2

3.1 GPIB Specifications
The GPIB Specifications of the MT9810B is summarized in the Table 3-1.

Table 3-1

Item Specifications value and description

Function

Interface functions

Conforms to IEEE 488.2.

MT9810B can be controlled from an external controller.

SH1: All of source handshake functions are supported.

Data send timing is controlled.

AH1: All of acceptor handshake functions are supported.

Data receive timing is controlled.

T6: Basic talker functions are supported. A serial port function is supported.

A talk-only function is not supported. The function of releasing the talker

with MLA is supported.

L4: Basic listener functions are supported. A listen-only function is not sup-

ported. The function of releasing the listener by MTA is supported.

SR1: All of service request/status byte functions are supported.

RL1: All of remote/local functions are supported.

A local lockout function is supported.

PP0: A parallel poll function is not supported.

DC1: All of device clear functions are supported.

DT0: A disk trigger function is not supported.

C0: A controller function is not supported.

A controller function is performed during external plot output.

3.2 RS-232C Specifications
The RS-232C Specifications of the MT9810B is summarized in the Table 3-2.

Table 3-2

Item Specifications

Function

Communication method

Communication control method

Baud rate

Data bits

Parity

Start bits

Stop bits

Connector

Control from external controller

Asynchronous (start-stop), half-duplex

No flow control

1200, 2400, 4800, 9600, 14400, 19200 bps

7 bits, 8 bits

Odd parity (ODD), even parity (EVEN), non-parity (NON)

1 bit

1 bit, 2 bits

D-sub 9-pin connector, male

3-3

3.3 Device Message List
Device messages are data messages which are transferred between a controller

and the devices. These messages are classified into program messages and re-

sponse messages.

Program messages are ASCII messages transferred from a controller to the de-

vices. Program messages are further classified into program commands and pro-

gram queries. These two types of commands are explained later in this manual.

Program commands include device-dependent commands which are exclusively

used for controlling the MT9810B and IEEE 488.2 common commands. IEEE

488.2 common commands are program commands which are commonly appli-

cable to other IEEE 488.2-ready measuring instruments (including the

MT9810B) on the GPIB interface bus.

Program queries are commands used to get response messages from devices.

Program queries must be transferred from a controller to a device in advance so

that the controller can receive response messages from the device later.

Response messages are ASCII data messages which are transferred from a device

to a controller. Among response messages, status messages, and response mes-

sages corresponding to program queries are listed later in this manual.

• Program commands Section 5

Program message

Responce message
Device

Controller

• Program queries Section 5

• IEEE488.2 common commands Section 7

• Status message Section 8

• Responce message Section 6

In program and response messages, numeric data may end with a suffix (unit).

3.3 Device Message List

Section 3 Specifications

3-4

The above messages are transferred through the device input/output buffer. The

output buffer is also called an output queue. A brief description of the output

buffer is given below.

Input buffer

Input buffer is an FIFO (first in first out) type memory area, that stores DABs

(program and query messages) temporarily before analysis of syntax and execu-

tion.

The input buffer size of the MT9810B is 256 bytes.

Output queue

Output queue is an FIFO-type queue memory area, that stores all DABs (response

messages) output from a device to a controller until those messages are read by

the controller.

The output queue size of the MT9810B is 256 bytes.

3-5

3.3 Device Message List

3.3.1 IEEE 488.2 common commands and the commands supported by
the MT9810B

The 39 common commands specified by IEEE 488.2 standard is shown in the
Table 3-3. Among these commands, the commands supported by the MT9810B

are marked with the check marks (√).

Table 3-3

Mnemonic Fully spelled out command name Standardized by IEEE 488.2

*ADD

*CAL

*CLS

*DDT

*DDT?

*DLF

*DMC

*EMC

*EMC?

*ESE

*ESE?

*ESR?

*GMC?

*IDN?

*IST?

*LMC?

*LRN?

*OPC

*OPC?

*OPT?

*PCB

*PMC

*PRE

*PRE?

*PSC

*PSC?

*PUD

*PUD?

*RCL

*RDT

*RDT?

*RST

*SAV

*SRE

*SRE?

*STB?

*TRG

*TST?

*WAI

Accept Address Command

Calibration Query

Clear Status Command

Define Device Trigger Command

Define Device Trigger Query

Disable Listener Function Command

Define Macro Command

Enable Macro Command

Enable Macro Query

Standard Event Status Enable Command

Standard Event Status Enable Query

Standard Event Status Register Query

Get Macro contents Query

Identification Query

Individual Status Query

Learn Macro Query

Learn Device Setup Query

Operation Complete Command

Operation Complete Query

Option Identification Query

Pass Control Back Command

Purge Macro Command

Parallel Poll Register Enable Command

Parallel Poll Register Enable Query

Power On Status Clear Command

Power On Status Clear Query

Protected User Data Command

Protected User Data Query

Recall Command

Resource Description Transfer Command

Resource Description Transfer Query

Reset Command

Save Command

Service Request Enable Command

Service Request Enable Query

Read Status Byte Query

Trigger Command

Self Test Query

Wait to Continue Command

Optional

Optional

Required

Optional

Optional

Optional

Optional

Optional

Optional

Required

Required

Required

Optional

Required

Optional

Optional

Optional

Required

Required

Optional

Other than C0: Required

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Required

Optional

Required

Required

Required

DT1: Required

Required

Required

Supported by MT9810B

NOTE:
IEEE 488.2 commands always begin with an asterick (*). Refer to the

Section 7 "Common Commands" for more details.

Section 3 Specifications

3-6

3.3.2 Device Message List

The device message list unique to the MT9810B is shown in the Table 3-4, 3-5

and 3-6. There are two types of commands: HP commands and SCPI-compliant

Anritsu original commands. The types of commands are also shown in the table.

Table 3-4 Main frame

Function Command HP
Brightness

Display ON/OFF

Calendar

Time

Buzzer

Header

Inserted unit

Error

DISPlay:BRIGhtness

DISPlay[:STATe]

SYSTem:DATE

SYSTem:TIME

SYSTem:BEEPer:STATe

SYSTem:COMMunicate:GPIB:HEAD

SYSTem:COMMunicate:SERial:HEAD

SYSTem:CHANnel:STATe

SYSTem:ERRor

√
√
√
√

SCPI Reference

√
√
√
√
√

Section 9.1.1

Section 9.1.2

Section 9.1.7

Section 9.1.9

Section 9.1.3

Section 9.1.5

Section 9.1.6

Section 9.1.4

Section 9.1.8

3-7

3.3 Device Message List

Table 3-5 Optical sensor

Function Command HP
Zero-set

Calibration factor

Auto range

Manual range

Reference value

Displays the reference value

Reference measurement

Reference selection

Unit

Wavelength

Unit of wavelength

Measurement data

The number of averaging

Auto bandwidth

Bandwidth

Modulation frequency

Measurement interval

The number of measurement

Logging

Statistical measurement

Measurement stop

Logging data

Logging data information

Maximum value

Minimum value

Difference between maximum

and minimum values

Measurement conditions

High-speed transfer mode start

High-speed transfer mode stop

SENSe[1|2]:CORRection:COLLect:ZERO

SENSe[1|2]:CORRection[:LOSS:[:INPut[:MAG

Nitude]]]

SENSe[1|2]:POWer:RANGe:AUTO

SENSe[1|2]:POWer:RANGe:[UPPer]

SENSe[1|2]:POWer:REFerence

SENSe[1|2]:POWer:REFerence:DISPlay

SENSe[1|2]:POWer:REFernce:STATe

SENSe[1|2]:POWer:REFernce:STATe:RATio

SENSe[1|2]:POWer:UNIT

SENSe[1|2]:POWer:WAVelength

SENSe[1|2]:POWer:WAVelength:UNI

FETCh[1|2][:SCALar]:POWer[:DC]

SENSe[1|2]:AVERage:COUNt

SENSe[1|2]:BANDwidth:AUTO

SENSe[1|2]:BANDwidth

SENSe[1|2]:FILTer:BPASs:FREQuency

SENSe[1|2]:POWer:INTerval

SENSe[1|2]:TRIGger:COUNt

SENSe[1|2]:INITiate[:IMMediate]

SENSe[1|2]:TRIGger[:SEQuence][:IMMediate]

ABORt[1|2]

SENSe[1|2]:MEMory:DATa

SENSe[1|2]:MEMory:DATa:INFO

SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:MAXimum

SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:MINimum

SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:PTPeak

SENSe[1|2]:MEMory:COPY[:NAME]

READ[1|2]

READ[1|2]:ABORt

√
√
√
√
√
√
√
√
√
√
√
√

SCPI

√
√
√
√
√
√
√
√
√
√
√
√
√

√

√
√
√

Section 9.2.6

Section 9.2.7

Section 9.2.17

Section 9.2.18

Section 9.2.19

Section 9.2.20

Section 9.2.21

Section 9.2.22

Section 9.2.23

Section 9.2.24

Section 9.2.25

Section 9.2.2

Section 9.2.3

Section 9.2.5

Section 9.2.4

Section 9.2.11

Section 9.2.16

Section 9.2.26

Section 9.2.12

Section 9.2.27

Section 9.2.1

Section 9.2.14

Section 9.2.15

Section 9.2.8

Section 9.2.9

Section 9.2.10

Section 9.2.13

Section 9.2.28

Section 9.2.29

Reference

�

Section 3 Specifications

3-8.

Table 3-6 Light source

Function Command HP
Modulation frequency

Attenuation

Optical output

Wavelength

Unit of wavelength

Measurement condition

SOURce[1|2]:AM[:INTerval]:FREQuency

SOURce[1|2]:POWer:ATTenuation

SOURce[1|2]:POWer:STATe

SOURce[1|2]:POWer:WAVelength

SOURce[1|2]:POWer:WAVelength:UNIT

SOURce[1|2]:MEMory[1|2]:COPY[:NAME]

√
√
√
√

SCPI

√
√

Section 9.3.1

Section 9.3.3

Section 9.3.4

Section 9.3.5

Section 9.3.6

Section 9.3.2

Reference

In the portion described as [1|2], enter the channel number into which the target

unit is inserted (1 or 2). The brackets ([]) are not required.

When you send the LIGHT SOURCE COMMAND to OPTICAL SENSOR, the

command error occurs.

At the opposite case (send the OPTICAL SENSOR COMMAND to LIGHT

SOURCE), the command error occurs too.

4-1

Initialization of the GPIB interface system is devided into three levels. At level 1,

"bus initialization" is performed to place the system bus in the idle state. At level

2, "message exchange initialization" is performed to enable devices to receive

program messages. At level 3, "device initialization" is performed to initialize

device-dependent functions.

At these three initialization levels, preparations are made for starting devices.

4.1 Initialization of Bus by IFC Statement 4-3

4.2 Initialization of Message Exchange by DCL and

SDC Bus Commands ... 4-5

4.3 Initialization of Devices by ∗ RST Command 4-7

4.4 Device States at Power-ON ... 4-8

4.4.1 Items not changes at Power-ON 4-9

4.4.2 Items related to PSC flag .. 4-9

4.4.3 Items that change at Power-ON.................................. 4-9

Section 4 Initial Setting

Section 4 Initial Setting

4-2

IEEE 488.2 specifies the initialization of the GPIB system as described in the

Table 4-1.

Table 4-1

Overview Combination and priority of levels

Interface functions of all devices connect-

ed to the bus are initialized by an IFC

message from a controller.

Message exchange is initialized and the

function of reporting completion of opera-

tion to the controller is disabled. This ini-

tialization can be ferformed either for all

devices on the GPIB using GPIB bus com-

mand DCL, or only for the specified

devices using a GPIB bus command SDC.

Only the specified devices on the GPIB

are initialized to the known states with an

∗ RST command irrespective of the past

use state.

Initialization type

Bus initialization

Message exchange

initialization

Device initialization

Level

1

2

3

This level may be combined with

other levels. However, initializa-

tion at level 1 must be performed

before initialization at other lev-

els.

This level may be combined

withother levels. However, ini-

tialization at level 2 must be per-

formed before initialization at

level 3.

This level may be combined with

other levels. However, initializa-

tion at level 3 must be performed

after initialization at levels 1 and 3.

When controlled from a controller via the RS-232C interface port, the MT9810B

can use the "device initialization" function (level 3). However, it cannot use "bus

initialization" (level 1) and "message exchange initialization" (level 2) functions.

When controlled from a controller via a GPIB interface bus, the MT9810B can

use all the above initialization functions (levels 1 to 3).

4-3

4.1 Initialization of Bus by IFC Statement
(1) Format

IFC ∆ select-code

(2) Explanation

This function can be used when the MT9810B is controlled from a controller

via a GPIB interface bus.

On the GPIB corresponding to the specified select code, the IFC line is acti-

vated for about 100 µs (as electrically set at the low level). When IFC is

executed, interface functions of all devices connected to the GPIB bus line

corresponding to the specified select code are initialized. Only the system

controller can send this command.

"Initialization of interface functions" refers to the processing in which con-

troller-set device interface functions (talker, listener, etc.) are reset to their

initial states. Functions marked with the check marks (√) in the following

table are initialized. The function marked with a triangle (∆) is initialized

partially.

Table 4-2

Initialization by IFC
√
√
√
√
∆

√

Function
Source handshake

Acceptor handshake

Talker or extended talker

Listener or extended listener

Service request

Remote/local

Parallel/poll

Device clear

Device trigger

Controller

No
1

2

3

4

5

6

7

8

9

10

Symbol
SH

AH

T or TE

L or LT

SR

RL

PP

DC

DT

C

If the IFC statement is True (the IFC line is set at the low level through execution

of the IFC statement), initialization is not performed at levels 2 and 3. Therefore,

device operating states are not affected.

IFC

Section 4 Initial Setting

4-4

The examples of device states set by the IFC statement are shown in the Table 4-3.

Table 4-3

Item Device state

Talker/listener

Controller

Return of control right

Devices issuing service

request

Devices in remote state

All talkers and listeners are set in the idle state (TIDS, LIDS) within 100 µs.

If the controller is not active (SACS: System control ACtive State), it enters the

idle state, or CIDS, (Controller IDle State) within 100 µs.

If the system controller (the first device on the GPIB which is used as a controller)

has granted the control right to another device when IFC is executed, the control

right is returned to the system controller. Generally, pressing the RESET key on

the system controller allows an IFC message to be output from the system con-

troller.

The state in which an SRQ message is issued by a device (the SRQ line is set at

the LOW level by the device) is not canceled, but the state in which all devices on

the system bus are placed in the serial poll mode by the controller is canceled.

For the devices currently in the remote state, the remote state is not canceled by

the IFC message.

4-5

DCL

4.2 Initialization of Message Exchange by DCL and

SDC Bus Commands
(1) Format

DCL ∆ select-code [primary-address] [secondary-address]

(2) Explanation

This function can be used when the MT9810B is controlled by a controller

via the GPIB interface bus.

This statement initializes message exchange for all device on the GPIB cor-

responding to the specified select code or only for the specified devices.

The purpose of message exchange is to allow the controller to send new

commands when the controller cannot control message-exchange-related

parts inside the devices due to execution of programs although it is not nec-

essary to change the panel settings.

(3) When only a select code is specified

Message exchange is initialized for all the devices on the GPIB correspond-

ing to the specified select code. DCL issues a DCL (Device Clear) bus com-

mand to the GPIB.

(4) When an address is also specified

Message exchange is initialized only for the specified device. Listeners on

the GPIB corresponding to the specified select code are canceled, only the

specified device is set as a listener, and an SDC (Selected Device Clear) bus

command is issued.

Section 4 Initial Setting

4-6

(5) Items subject to initialization of message exchange

Table 4-4

Item Device state
Input buffer and output queue

Syntax analysis, execution control,

and response generation parts

Device commands including ∗ RST

Paired parameter/program

message

∗ OPC command processing

∗ OPC? query processing

Automatic system configura-

tion

Device function

The settings are cleared.

The functions are reset.

All commands interfering with execution of these commands are cleared.

All commands and queries of which execution has been suspended due to paired

parameters are discarded.

The specified device is set in the OCIS (Operating Complete Command Idle State).

The operation complete bit cannot be set in the standard event status register.

Section 7

The specified device is set in the OQIS (Operating Complete Query Idle State).

The operation complete bit 1 cannot be set in the output queue. The MAV (Mes-

sage Available) bit is cleared.

Section 7

∗ ADD and ∗ DLF common commands are invalidated. (The MT9810B does not

support these commands.)

All parts related to message exchange are set in the idle state. The device waits for

a message from the controller.

The following operations using DCL are prohibited.

(a) Changing the current device settings and stored data

(b) Interrupting front panel I/O

(c) Changing status bits other than the MAV bit when clearing the output

queue

(d) Affecting or interrupting the device operation currently being per-

formed

(6) Orders of issuing GPIB bus commands using DCL statements

Orders of issuing GPIB bus commands using DCL, SDC statements are

summarized in the Table 4-5.

Table 4-5

Statement Bus command issue order (ATN line: Low level) Data (ATN line: High level)

DCLselect-code

DCLdevice-number

UNL, DCL

UNL, LISTEN address, [secondary-address], SDC

4-7

∗∗∗∗∗ RST

4.3 Initialization of Devices by ∗∗∗∗∗ RST Command
(1) Format

∗ RST

(2) Explanation

The ∗ RST (Reset) command is one of the IEEE 488.2 common command,

which is used to reset a specified device at level 3.

Generally, devices are set in various states using device-dependent com-

mands (device messages). Among these commands, the ∗ RST command is

used to reproduce a known state of a device. Completion of device operation

is invalidated like level 2.

(3) Specification of device number in WRITE statement

The device at the specified address is initialized at level 3.

(4) Items subject to device initialization

Table 4-6

Item Device state

Device-dependent functions

and states

∗ OPC command processing

∗ OPC? query processing

Macro command

The specified device is set in a known state irrespective of its history. (Refer to the

lists on the following pages.)

The specified device is set in the OCIS (Operating Complete Command Idle State).

The operation complete bit cannot be set in the standard event status register.

Section 7

The specified device is set in the OQIS (Operating Complete Query Idle State).

The operation complete bit 1 cannot be set in the output queue. The MAV (Mes-

sage Available) bit is cleared.

　Section 7

Macro operation is disabled, and sets the state in which macro commands cannot

be accepted. The returnes the macro definitions to the designer's state.

NOTES:
∗ RST command does not affect the following items:

1. IEEE 488.1 interface state

2. Device address

3. Output queue

4. Service request enable register

5. Standard event status enable register

6. Power-on-status-clear flag setting

7. Calibration data affecting device standard

8. RS-232C interface condition

Section 4 Initial Setting

4-8

4.4 Device States at Power-ON
When the power is turned on:

(1) The MT9810B is restored to the last Power-OFF state.

(2) The input buffer and output queue are cleared.

(3) Syntax analysis, execution control, and response generation parts are reset.

(4) The device is set in the OCIS.

(5) The device is set in the OQIS.

(6) The MT9810B does not support a ∗ PSC command. Therefore, the standard

event status register and standard event status enable register are cleared.

Events are recorded after being cleared.

States (2) to (5) are set except when the power is turned on. The following

diagram describes these states.

• Input buffer

• Output queue

• Syntax analysis

part

• Execution

control part

• Response

generation part

ResetClear
pon∨ dcas

Operation

Complete

Query

Idle State

OQIS

pon

∨
dcas

∨
∗ CLS

∨
∗ RST

pon∨ dcas

Operation

Complete

Command

Idle State

OCIS

pon

∨
dcas

∨
∗ CLS

∨
∗ RST

4-9

4.4.1 Items not changes at Power-ON

(1) Address

(2) Associating calibration data

(3) Data and states are changed by the responses to the following common query

commands.

∗ IDN? Refer to the Section 7 "Common Commands"

∗ OPT? Refer to the Section 7 "Common Commands"

∗ PSC? Not supported by the MT9810B

∗ PUD? Not supported by the MT9810B

∗ RDT? Not supported by the MT9810B

4.4.2 Items related to PSC flag

When the PSC (Power-ON status clear) flag is False, the service request enable

register, standard event status enable register, and parallel poll enable register are

not affected. Refer to the Section 8.3 "Enabling the SRQ" for the service request

enable register, and refer to the Section 8.4 "Standard Event Status Register" for

the standard event status enable register

When the PSC flag is Low level (True) or the ∗ PSC command has not been ex-

ecuted, the above registers are cleared.

NOTE:
The PSC command is not supported by the MT9810B.

4.4.3 Items that change at Power-ON

(1) Current device function state

(2) Status information

(3) *SAV/*RCL register (Not supported by the MT9810B)

(4) Macro definition made with a *DDT command (Not supported by the

MT9810B)

(5) Macro definition made with a *DMC command (Not supported by the

MT9810B)

(6) Macro enabled with an *EMC command (Not supported by the MT9810B)

(7) Address received with a *PCB command (Not supported by the MT9810B)

4.4 Device States at Power-ON

Section 4 Initial Setting

4-10 .

5-1

Device messages are data messages transferred between the controller and devices,

which can be classified into program messages and response messages. This section

explains the formats of the program messages received by listeners.

5.1 Summary of Listener Input Program Message

Syntactical Notation ... 5-3

5.1.1 Separator, Terminator, and Space Before Header 5-3

5.1.2 General Format of Program Command Message 5-5

5.1.3 General Format of Query Message 5-6

5.2 Program Message Functional Elements 5-7

5.2.1 <TERMINATED PROGRAM MESSAGE> 5-7

5.2.2 <PROGRAM MESSAGE TERMINATOR>.................. 5-8

5.2.3 <white space> ... 5-9

5.2.4 <PROGRAM MESSAGE> .. 5-9

5.2.5 <PROGRAM MESSAGE UNIT SEPARATOR> 5-10

5.2.6 <PROGRAM MESSAGE UNIT> 5-10

5.2.7 <COMMAND MESSAGE UNIT>/

<QUERY MESSAGE UNIT> 5-11

5.2.8 <COMMAND PROGRAM HEADER> 5-12

5.2.9 <QUERY PROGRAM HEADER> 5-14

5.2.10 <PROGRAM HEADER SEPARATOR> 5-15

5.2.11 <PROGRAM DATA SEPARATOR> 5-15

5.3 Program Data Format .. 5-16

5.3.1 <CHARACTER PROGRAM DATA> 5-17

5.3.2 <DECIMAL NUMERIC PROGRAM DATA> 5-18

5.3.3 <SUFFIX PROGRAM DATA> 5-22

5.3.4 <NON-DECIMAL NUMERIC PROGRAM DATA> 5-25

5.3.5 <STRING PROGRAM DATA> 5-26

5.3.6 <ARBITRARY BLOCK PROGRAM DATA> 5-27

5.3.7 <EXPRESSION PROGRAM DATA> 5-31

Section 5 Listener Input Formats

Section 5 Listener Input Formats

5-2

A program message is a sequence of program message units. Each unit is a pro-

gram command or query.

The following diagram shows how to set the wavelength and measurement range

of the power meter unit inserted into Channel 1 to 1550 nm and –10 dBm. As it

explained in the diagram, two program message units SENSE1:POWER:

WAVELENGTH 1550NM and SENSE1:POWER:RANGE:UPPER –10DBM

are connected with the program message unit separator and sent to the device

from the controller as one program message.

sp NLend

<PROGRAM DATA>

1550 N M

Listener

(device)

Address15

Talker

(controller)
Call Send(0, 15, "SENSE1: POWER: WAVELENGTH 1550NM ; SENSE1: POWER: RANGE: UPPER-10DBM", NLend)

SENSE1: POWER: WAVELENGTH 1550NM

<PROGRAM MESSAGE>

<PROGRAM MESSAGE UNIT> <PROGRAM MESSAGE UNIT><PROGRAM MESSAGE UNIT SEPARATOR>

Listener address specification <PROGRAM MESSAGE TERMINATOR>

<TERMINATED PROGRAM MESSAGE>

SENSE1: POWER: RANGE: UPPER -10DBMsp ;

<COMMAND PROGRAM HEADER>

SENSE1: POWER: WAVELENGTH

<PROGRAM HEADER SEPARATOR>

<white space>

sp

<white space> <decimal numeric program data>

1550

<suffix program data>

N

<program mnemonic>

SENSE1: POWER: WAVELENGTH

<suffix program data>

M

sp

<white space>

<COMMAND PROGRAM HEADER>

SENSE1: POWER: RANGE: UPPER

<PROGRAM HEADER SEPARATOR>

<PROGRAM DATA>

-10 DBM

; <white space> NL

A program message is a sequence of functional elements, the minimum units that

can represent functions. In the above figure, functional elements are indicated by

capital characters with them enclosed in < >. Functional elements are further

classified into coding elements which are indicated by lowercase characters with

them enclosed in < >.

The chart indicating the route of selection of functional elements is called a func-

tional syntactical chart. The chart indicating the route of selection of coding ele-

ments is called a coding syntactical chart. Refer to the Section 5.1 "Summary of

Listener Input Program Message Syntactical Notation" for the program message

formats using these functional and coding syntactical charts.

Coding elements indicate coding of the actual bus which is required to send func-

tional element data byte to a device. Upon receipt of a functional element data

byte, the listener checks whether individual elements follow the coding syntax

rules. If these elements do not follow the rules, the listener causes a command

error without regarding the elements as functional elements.

5-3

5.1 Summary of Listener Input Program Message Syn-

tactical Notation
This section gives a general description of program message functional units and

program data formats. Refer to the Section 5.2 "Program Message Functional

Elements" for program message functional units and the Section 5.3 "Program

Data Format" for data formats. (Compound commands and common commands

are excluded.)

5.1.1 Separator, Terminator, and Space Before Header

(1) <PROGRAM MESSAGE UNIT SEPARATOR>

Link two or more <PROGRAM MESSAGE UNIT> elements using zero or

more spaces and a semicolon.

<Example> The general format for linking two <PROGRAM MESSAGE UNIT> elements

<PROGRAM

MESSAGE UNIT>
<white space> ;

<PROGRAM

MESSAGE UNIT>

(2) <PROGRAM DATA SEPARATOR>

Separate two or more contiguous pieces of <PROGRAM DATA> using a

comma in between zero or more spaces.

<Example> The general format for separating two pieces of <PROGRAM DATA>

<PROGRAM DATA> <PROGRAM DATA><white space> <white space>,

(3) <PROGRAM HEADER SEPARATOR>

Separate <PROGRAM HEADER> and <PROGRAM DATA> using one

space and zero or more spaces.

<Example> The general format of single command <PROGRAM HEADER>

<PROGRAM HEADER> <PROGRAM DATA><white space> <white space>

5.1 Summary of Listener Input Program Message Syntactical Notation

Section 5 Listener Input Formats

5-4

(4) <PROGRAM MESSAGE TERMINATOR>

Add zero or more spaces and one of NL, EOI, and a combination of NL and

EOI at the end of a <PROGRAM MESSAGE>.

<General format>

∧ END

NL

NL

<PROGRAM MESSAGE> <white space>

∧ END

(5) Space before header

Zero or more spaces can precede a <PROGRAM HEADER>.

<General format>

<PROGRAM HEADER> <PROGRAM HEADER SEPARATOR><white space>

5-5

5.1.2 General Format of Program Command Message

(1) Message without data specification

<HR>

HR: COMMAND PROGRAM HEADER

(2) Message with integer data

<HR> NR1SP

NR1: Integer

(3) Message with real number

<HR> NR2SP

NR2: Real number

(4) Message with fixed or arbitrary character string data (data length

≤ 12 characters)

<HR> characterSP

(5) Message with multiple pieces of program data (starts with NR1)

<HR> NR1 or NR2NR1 or NR2 ,SP

,

5.1 Summary of Listener Input Program Message Syntactical Notation

Section 5 Listener Input Formats

5-6

(6) Character-only message that can use all ASCII 7-bits

<HR>

<inserted'>

non single

quote char

' '

'

"

SP

<inserted">

non single

quote char

"

"

<inserted '>: Single ASCII code representing a value 27

non-single quote char: Single ASCII code representing a value other than

27

<inserted ">: Single ASCII code representing a value 22

non-single quote char: Single ASCII code representing a value other than

22

5.1.3 General Format of Query Message

Add a question mark (?) at the end of command <PROGRAM HEADER> for a

query <PROGRAM HEADER>.

(1) Message without query data specification

<HR>

(2) Message with query data specification

<HR> NR2NR1 'SP

5-7

5.2 Program Message Functional Elements

5.2 Program Message Functional Elements
A device accepts a program message by detecting the terminator added at the end

of the program message. The following pages describe the functional elements of

the program message.

5.2.1 <TERMINATED PROGRAM MESSAGE>

<TERMINATED PROGRAM MESSAGE> is defined as follows:

<PROGRAM MESSAGE>

Refer to 5.2.4

<PROGRAM

MESSAGE TERMINATOR>

Refer to 5.2.2

<TERMINATED PROGRAM MESSAGE> is a data message containing all the

necessary functional elements to be sent from a controller to a device.

To complete the transfer of <PROGRAM MESSAGE>, <PROGRAM MES-

SAGE TERMINATOR> is added at the end of <PROGRAM MESSAGE>.

Section 5 Listener Input Formats

5-8

5.2.2 <PROGRAM MESSAGE TERMINATOR>

<PROGRAM MESSAGE TERMINATOR> is defined as follows:

∧ ENDNL

NL

<white space>

Refer to 5.2.3

∧ END

<PROGRAM MESSAGE TERMINATOR> terminates a sequence of one or

more fixed-length <PROGRAM MESSAGE UNIT> elements.

NL Defined as a single ASCII code byte 0A (decimal 10), which is an

ASCII control character LF (Line Feed) that moves the printing position

down one line. Because the printing starts at a new line, it is also called

NL (New Line).

END Sets the EOI line, one of GPIB control buses, at the LOW level (True),

generating an EOI signal.

NOTE:
The CR code is used to return the printing position to the first character

position on the same line; however, most listeners ignore this cord.

Some products available on the market uses CR-LF code, so most con-

trollers are so designed that CR and LF codes are issued in succession.

LF

CR LF

5-9

5.2.3 <white space>

<white space> is defined as follows:

<white space

character>

<white space character> is one of single ASCII code bytes 00 to 09 and 0B to 20

(decimal values 0 to 9 and 11 to 32).

This range includes ASCII control codes and space signals and excepts NL. The

device does not regard these codes as ASCII control codes but the spaces and it

skips those cords.

5.2.4 <PROGRAM MESSAGE>

<PROGRAM MESSAGE> is defined as follows:

<PROGRAM MESSAGE UNIT>

Refer to 5.2.6

<PROGRAM MESSAGE

UNIT SEPARATOR>

Refer to 5.2.5

<PROGRAM MESSAGE> is zero, a <PROGRAM MESSAGE UNIT> element,

or a sequence of <PROGRAM MESSAGE UNIT> elements. A <PROGRAM

MESSAGE UNIT> element is a programming command or data which is sent

from a controller to a device.

A <PROGRAM MESSAGE UNIT SEPARATOR> element is used to separate

two or more <PROGRAM MESSAGE UNIT> elements.

5.2 Program Message Functional Elements

Section 5 Listener Input Formats

5-10

5.2.5 <PROGRAM MESSAGE UNIT SEPARATOR>

<PROGRAM MESSAGE UNIT SEPARATOR> is defined as follows:

;<white space>

<white space> is defined as follows:

<white space character>

Refer to 5.2.3

<PROGRAM MESSAGE UNIT SEPARATOR> divides a sequence of <PRO-

GRAM MESSAGE UNIT> elements within the range of <PROGRAM MES-

SAGE>.

A device interprets a semi-colon (;) as the separator between <PROGRAM MES-

SAGE UNIT> elements. Accordingly, <white space character> placed before

and after the semi-colon (;) is ignored, although <white space character> im-

proves program readability. <white space> following a semi-colon (;) is also

used as a <white space> for the next <PROGRAM HEADER>.

Section 5.2.8

5.2.6 <PROGRAM MESSAGE UNIT>

<PROGRAM MESSAGE UNIT> is defined as follows:

<COMMAND MESSAGE UNIT>

Refer to 5.2.7

<QUERY MESSAGE UNIT>

Refer to 5.2.7

<PROGRAM MESSAGE UNIT> is a single command message received by a

device.

It consists of <COMMAND MESSAGE UNIT> or <QUERY MESSAGE

UNIT>, which is a single query message.

Refer to the Section 5.2.7 "<COMMAND MESSAGE UNIT>/<QUERY MES-

SAGE UNIT>" for more details.

5-11

5.2 Program Message Functional Elements

5.2.7 <COMMAND MESSAGE UNIT>/<QUERY MESSAGE UNIT>

<COMMAND MESSAGE UNIT> is defined as follows:

<PROGRAM DATA>

<PROGRAM

DATA SEPARATOR>

Refer to 5.2.11

<PROGRAM

HEADER SEPARATOR>

Refer to 5.2.10

<COMMAND

PROGRAM HEADER>

Refer to 5.2.8

<QUERY MESSAGE UNIT> is defined as follows:

<PROGRAM DATA>

<PROGRAM

DATA SEPARATOR>

Refer to 5.2.11

<PROGRAM

HEADER SEPARATOR>

Refer to 5.2.10

<QUERY

PROGRAM HEADER>

Refer to 5.2.9

When a <PROGRAM HEADER> of <COMMAND MESSAGE UNIT> or

<QUERY MESSAGE UNIT> is followed by <PROGRAM DATA>, a space is

inserted between these unit. A <PROGRAM HEADER> indicates the applica-

tion, function, and operation of the program. If a <PROGRAM HEADER> is not

followed by <PROGRAM DATA>, the <PROGRAM HEADER> solely indi-

cates the application, function, and operation to be performed in the device.

Among <PROGRAM HEADER> elements, <COMMAND PROGRAM

HEADER> is a control command issued from a controller to a device and

<QUERY PROGRAM HEADER> is a query command that is issued from a con-

troller to a device in advance so that the controller can receive responses from the

device. <QUERY PROGRAM HEADER> always ends with a query indicator,

or a question mark (?).

Section 5 Listener Input Formats

5-12

5.2.8 <COMMAND PROGRAM HEADER>

<COMMAND PROGRAM HEADER> is defined below.

Each header can be followed by <white space>.

<white space>

Refer to 5.2.3

<common command

program header>

Refer to (3)

<compound command

program header>

Refer to (2)

<simple command

program header>

Refer to (1)

(1) <simple command program header> is defined as follows:

<program mnemonic>

Refer to (4)

(2) <compound command program header> is defined as follows:

::
<program mnemonic>

Refer to (4)

<program mnemonic>

Refer to (4)

(3) <common command program header> is defined as follows:

∗ <program mnemonic>

Refer to (4)

(4) <program mnemonic> is defined as follows:

<upper/lower

case alpha>

<upper/lower

case alpha>

<digit>

_

5-13

5.2 Program Message Functional Elements

<COMMAND PROGRAM HEADER>
<COMMAND PROGRAM HEADER> indicates the application, function, and

operation of the program data to be executed by the device usually followed by

<PROGRAM DATA>. When it is not followed by <PROGRAM DATA>, the

header solely indicates the application, function, and operation to be performed in

the device.

The meanings of an application, function, or operation is represented by <pro-

gram mnemonic> in ASCII cord, which is widely called a mnemonic. Mnemon-

ics and the <COMMAND PROGRAM HEADER> defined in (1) to (3) above are

explained below.

<program mnemonic>
A mnemonic begins with an uppercase or lowercase character, which is followed

by an arbitrary combination of characters such as uppercase characters (A to Z) or

lowercase characters (a to z), underline (_), and numeric characters (0 to 9). A

mnemonic can contain a maximum of 12 characters; however, most mnemonics

contain 3 to 4 characters. (No space is inserted between characters.)

<upper/lower case alpha> One of ASCII code bytes 41 to 5A and 61 to 7A

(decimal values 65 to 90 and 97 to 122 = uppercase

characters A to Z and lowercase characters a to z).

The device can accept a header irrespective of

whether it is represented by uppercase or lowercase

characters.

<digit> One of ASCII code bytes 30 to 39 (decimal values

48 to 57 = characters 0 to 9).

(_) An ASCII code byte, i.e., ASCII code byte 5F (deci-

mal value 95 = underline).

<simple command program header>
The above rules for <program mnemonic> applies.

<compound command program header>
<compound command program header> is a <COMMAND PROGRAM

HEADER> that executes a compound function. <program mnemonic> is always

preceded by a colon (:) to separate it from <compound command program

header>. When only one <compound command program header> is used, the

succeeding colon (:) may be omitted.

Function:
On a complex device, a device command set is organized logically by

providing a compound function instead of limiting the number of

unique headers. A hierarchical command structure can be handled ef-

fectively.

<common command program header>
An asterisk (∗) is always added before <program mnemonic> of <common com-

mand program header>. "Common" means that this command is a program com-

mand which commonly used for other IEEE 488.2-ready measuring instruments

connected to the bus.

Section 5 Listener Input Formats

5-14

5.2.9 <QUERY PROGRAM HEADER>

<QUERY PROGRAM HEADER> is defined as follows:

<white space> may be written before each header.

<white space>

Refer to 5.2.3

<common query

program header>

Refer to (3)

<compound query

program header>

Refer to (2)

<simple query

program header>

Refer to (1)

(1) <simple query program header> is defined as follows:

?
<program mnemonic>

Refer to (4) of 5.2.8

(2) <compound query program header> is defined as follows:

?::
<program mnemonic>

Refer to (4) of 5.2.8

<program mnemonic>

Refer to (4) of 5.2.8

(3) <common query program header> is defined as follows:

∗ ?
<program mnemonic>

Refer to (4) of 5.2.8

<QUERY PROGRAM HEADER>

<QUERY PROGRAM HEADER> is a query command which is sent from a

controller to a device in advance so that the controller can receive response mes-

sages from the device. This header always ends with a query indicator, or a ques-

tion mark (?). It is explained below using examples of programs.

The format of <QUERY PROGRAM HEADER> is the same as that of <COM-

MAND PROGRAM HEADER> with the exception that a query indicator, or a

question mark (?), is added at the end. Refer to the Section 5.2.8 "<COMMAND

PROGRAM HEADER>."

5-15

5.2 Program Message Functional Elements

5.2.10 <PROGRAM HEADER SEPARATOR>

<PROGRAM HEADER SEPARATOR> is defined as follows:

<white space>

Refer to 5.2.3

<PROGRAM HEADER SEPARATOR> is used as the separator between

<COMMAND PROGRAM HEADER> or <QUERY PROGRAM HEADER>

and <PROGRAM DATA>.

When there are two or more <white space character> elements between the

<PROGRAM HEADER> and the <PROGRAM DATA>, the first <white space

character> is interpreted as a separator and the remaining <white space charac-

ter> is ignored, although <white space character> improves program readability.

At least one header separator must exist between the header and the data. One

separator indicates the end of the <PROGRAM HEADER> as well as the begin-

ning of the <PROGRAM DATA>.

5.2.11 <PROGRAM DATA SEPARATOR>

<PROGRAM DATA SEPARATOR> is defined as follows:

,
<white space>

Refer to 5.2.3

<white space>

Refer to 5.2.3

<PROGRAM DATA SEPARATOR> is used to separate the parameters, when

<COMMAND PROGRAM HEADER> or <QUERY PROGRAM HEADER>

has many parameters.

When this data separator is used, a comma is mandatory but <white space charac-

ter> can be omissible. The <white space character> before a comma and the

<white space character> after a comma are ignored, although <white space char-

acter> improves program readability.

Section 5 Listener Input Formats

5-16

5.3 Program Data Format
This section explains the format of the <PROGRAM DATA> shown in the func-

tional syntactical charts in the Section 5.2.7 "<COMMAND MESSAGE UNIT>/

<QUERY MESSAGE UNIT>", which is one of terminated program message for-

mats.

The functional element of the <PROGRAM DATA> is used to transfer various

types of parameters related to the <PROGRAM HEADER>. <PROGRAM

DATA> types are shown below. The MT9810B accepts the program data shown

in the hollow squares surrounded by a shade. For the program data not supported

by the MT9810B, read this section just for reference.

<NON-DECIMAL

NUMERIC

PROGRAM DATA>

<ARBITRARY

BLOCK

PROGRAM DATA>

<EXPRESSION

PROGRAM DATA>

<CHARACTER

PROGRAM DATA>

<DICIMAL NUMERIC

PROGRAM DATA>

Refer to 5.3.2

<SUFFIX

PROGRAM DATA>

Refer to 5.3.3

<STRING

PROGRAM DATA>

5-17

5.3.1 <CHARACTER PROGRAM DATA>

The functional element of the <CHARACTER PROGRAM DATA> is used to

perform remote control by transferring short alphabetic or alphanumeric data. It

is defined as follows:

<program mnemonic>

Details on character data are the same as those on <program mnemonics>. The

numeric data has been focused as control data, however, the program data can

also be used to perform control. A coding syntactical chart is as follows:

<upper/lower

case alpha>

<upper/lower

case alpha>

<digit>

_

The data always begins with an uppercase or lowercase character, which is fol-

lowed by an arbitrary combination of characters such as uppercase characters (A

to Z) or lowercase characters (a to z), underline (_), and numeric characters (0 to

9). Since combinations of alphanumeric characters are used as mnemonic-like

symbols, the maximum data length is 12 characters.

<upper/lower case alpha> One of ASCII code bytes 41 to 5A and 61 to 7A

(decimal values 65 to 90 and 97 to 122 = uppercase

characters A to Z and lowercase characters a to z).

The device can accept a header irrespective of

whether it is represented by uppercase or lowercase

characters.

<digit> One of ASCII code bytes 30 to 39 (decimal values

48 to 57 = characters 0 to 9).

(_) A single ASCII code byte, i.e., ASCII code byte 5F

(decimal value 95 = underline).

Therefore, <CHARACTER PROGRAM DATA> is <PROGRAM DATA> used

to transfer relatively short mnemonic-type alphanumeric codes.

5.3 Program Data Format

Section 5 Listener Input Formats

5-18

5.3.2 <DECIMAL NUMERIC PROGRAM DATA>

<DECIMAL NUMERIC PROGRAM DATA> is <PROGRAM DATA> used to

transfer numeric constants represented in decimal notation. There are three types

of decimal numeric representation: integer, fixed-point, and floating-point.

These three types of numerics represent decimal numeric program data, which

can contain spaces, flexibly (NRf: flexible numeric representation). These nu-

merics are defined as follows:

<exponent><white space><mantissa>

<mantissa> is defined as follows:

<digit>

<optional

digits>

<optional

digits>

<digit>

.+

– .

<exponent> is defined as follows:

<digit>
<white

space>

+

E/e

–

<white space> and <optional digits> are defined as follows:

<white space

character>
<digit>

refer to the Section 5.2.3 "<white space>" for <white space>, and refer to the

Section 5.3.1 "<CHARACTER PROGRAM DATA>" for <digit>.

5-19

5.3 Program Data Format

The following pages describe coding syntactical charts of decimal numeric pro-

gram data with respect to integer, fixed-point, and floating-point notations re-

spectively.

Note that the following processing is performed during transfer of any type of

numeric representation:

Rounding of numeric element When a device receives a <DECIMAL NU-

MERIC PROGRAM DATA> element having

too many digits to handle, it ignores the sign of

the element value and rounds it off.

Data outside the range If the <DECIMAL NUMERIC PROGRAM

DATA> element value is outside the range per-

mitted in relation to the program header, an ex-

ecution error is reported.

(1) Integer NR1 transfer

A decimal value not including a decimal point and exponent, i.e., an integer

(NR1) in a real number, is transferred.

<digit>
<white

space>

+

–

• 0 (s) may be added at the beginning → 005, +000045

• A space (+ or –) must not be inserted between a sign and a numeric. → +5, +∆5 (×)

• Spaces may be added after a numeric. → +5∆∆∆
• The + sign may be omitted. → +5, 5

• Commas must not be used to indicate decimal places. → 1,234,567 (×)

Section 5 Listener Input Formats

5-20

(2) Fixed-point NR2 transfer

A decimal number having digits below the decimal point, i.e., an integer and

a real number (NR2) except an exponent, is transferred.

The syntactical chart shows an integer part and a decimal point and a decimal

part.

Decimal point

<digit>

<white space

character>

+
.

.
–

<digit>

<digit>

<digit>

(Integer part)

The numeric in the integer

part may be omitted.

The numeric in the decimal

part may be omitted.

The decimal point

cannot be omitted.

(Decimal part)

• An integer representation is applied to the integer part.

• A space must not be inserted between a numeric and a decimal point. → +753 ∆.123 (×)

• Spaces may be added after the numeric in the decimal part. → +753.123∆∆∆∆
• The decimal point need not follow a numeric. → .05

• A sign may be written before a decimal point. → +.05, –.05

• A numeric may end with a decimal point. → 12.

5-21

5.3 Program Data Format

(3) Floating-point NR3 transfer

A decimal numeric valve having an exponent, i.e., a real number (NR3) rep-

resented in floating-point notation, is transferred. The syntactical chart con-

sists of a mantissa part and an exponent part. The exponent part is repre-

sented in integer and floating-point notation to indicate precision of the nu-

meric. The exponent part begins with E. On the right of E is a number to the

power of 10.

<digit>

<white space

character>

+
.

.

To ♦

♦

–

E/e

<digit>

<digit>

<digit>

<digit>

<white space

character>

+

–

(Mantissa part)

(Exponent part)

• E indicates power of 10. It indicates the beginning of the exponent part.

• E may be either an uppercase or lowercase character. → 1.234E+12, 1.234e+12

• A space may be written before or after E/e. → 1.234 ∆ E ∆ +12

• If the sign is +, it may be omitted in mantissa and exponent parts. → +1.234E+4, 1.234E4

• The numeric in the exponent part cannot be omitted. → –1E2, –E2 (×), –.E2 (×)

Section 5 Listener Input Formats

5-22

5.3.3 <SUFFIX PROGRAM DATA>

<SUFFIX PROGRAM DATA> follows <DECIMAL NUMERIC PROGRAM

DATA> (integer NR1, fixed-point NR2, or floating-point NR3) described in the

Section 5.3.2 "<DECIMAL NUMERIC PROGRAM DATA>." The NR1, NR2,

and NR3 may be followed by a suffix.

NR1

NR2

NR3

<SUFFIX

PROGRAM

DATA>

NR field

A suffix is added at the end of decimal numeric program data only when the data

requires a unit of measure. It is a combination of a suffix unit and a suffix multi-

plier. The syntactical chart is shown below. Bold-line routes are used frequently.

<white

space>

<suffix

mult>

<suffix

unit>
<digit>

<suffix

unit>

/

–

/

.

<digit>–

• A suffix multiplier is represented by an uppercase or lowercase character.

For example, 1E3 Hz is represented by 1 kHz assuming 1E3 = k.

• A suffix unit is represented by an uppercase or lowercase character.

• Placing E at the beginning of <SUFFIX PROGRAM DATA> is prohibited because it may be confused with the

E used for floating-point decimal numerics.

5-23

5.3 Program Data Format

Suffix multipliers and units are listed in the Table 5-1.

(1) Suffix multipliers

Table 5-1 Suffix multipliers

Multiplier Mnemonic Name
1E18

1E15

1E12

1E9

1E6

1E3

1E-3

1E-6

1E-9

1E-12

1E-15

1E-18

EX

PE

T

G

MA (NOTE)

K

M (NOTE)

U

N

P

F

A

EXA

PETA

TERA

GIGA

MEGA

KILO

MILLI

MICRO

NANO

PICO

FEMTO

ATTO

NOTE:
According to convention, Hz to the sixth power of 106 is MHz (mega-

hertz) and OHM to the six power of 106 is MOHM (megaohm). These

are not listed in the above table, but listed in the Table 5-2 "Suffix

units."

(2) Relative units (dB)

Decibel relative to 1 µV DBUV

Decibel relative to 1 µW DBUW

Decibel relative to 1 mW DBMW

For historical reasons, DBM is allowed as an alias for DBMW.

Section 5 Listener Input Formats

5-24

(3) Suffix units

Table 5-2 Suffix units

Current

Atmospheric pressure

Charge

Luminance

Decibel

Power

Capacitance

Mass

Inductance

Frequency (hertz)

Mercury column

Joule

Temperature

Volume

Luminance

Luminance

Length (meter)

Frequency (1E3 Hz)

Resistance

Force

Resistance

Pressure

Ratio (percent)

Angle (radian)

Angle (degree)

Time (second)

Conductance

Automatic speed

Pressure

Voltage

Power (watt)

Speed/hour

Luminance

A

ATM

C

CD

DB

DBM

F

H

HZ

INHG

J

K

L

LM

LX

M

N

OHM

PAL

PCT

RAD

S

SIE

T

TORR

V

W

WB

LM

G

CEL

FAR

FT

IN

MHZ

MOHM

DEG

MNT

SEC

Ampere

Atmosphere

Coulomb

Candela

Decibel

Decibel milliwatt

Farad

Gram

Henry

Hertz

Inches of mercury

Joule

Degree Kelvin

Degree Celsius

Degree Fahrenheit

Liter

Lumen

Lux

Meter

Feet

Inch

Megahertz

Megaohm

Newton

Ohm

Pascal

Percent

Radian

Degree

Minute (of arc)

Second

Siemens

Tesla

Torr

Volt

Watt

Weber

Lumen

Item
Recommended

mnemonic of unit

Quasi recommended

mnemonic of unit
Name

5-25

5.3 Program Data Format

5.3.4 <NON-DECIMAL NUMERIC PROGRAM DATA>
<NON-DECIMAL NUMERIC PROGRAM DATA> is <PROGRAM DATA>
used to transfer decimal, octal, and binary numeric data as non-decimal numeric
values. Non-decimal data always begins with a number code, or a sharp (#). It is
defined as shown in the coding syntactical chart below.

When an unspecified character string is sent, a command error occurs.

<digit>

Q/q

H/h C/c

D/d

E/e

F/f

B/b

A/a

2

3

4

5

6

7

1

0

B/b

1

0

The character string following #H or #h is

accepted by the device as a hexadecimal

number.

The character strings in parentheses are

decimal numbers.

#Habc1230 (11,256,099D)

#hAbC123

#H2DC3 (11,715D)

#h2dc3

#H8301 (33,537D)

#h8301

The character string following #Q or #q is

accepted by the device as an octal number.

#Q37 (31D)

#q37

#Q26703 (11,715D)

#q26703

The character string following #B or #b is

accepted by the device as a binary number.

#B101010111100000100100011 (11,256,099D)

#b0010110111000011 (11,715D)

Section 5 Listener Input Formats

5-26

5.3.5 <STRING PROGRAM DATA>

<STRING PROGRAM DATA> is <PROGRAM DATA> consisting of only

character strings. All ASCII 7 bit codes can be used. When a character string

includes single quotation mark (') or a double quotation mark ("), two identical

quotation marks must be written in succession per quotation mark.

<inserted'>

<non-single

quote char>

'

'

'

"

<inserted">

<non-double

quote char>

"

"

(1) A character string must be enclosed with single quotation (') or double quota-

tion (") marks irrespective of whether the character string contains any quo-

tation mark. For example:

It's a nice day. → "It's a nice day."

→ 'It' 's a nice day.'

(2) When a character string is enclosed with single quotation marks ('), each

single quotation mark contained in the character string must be doubled.

Other characters, including double quotation marks ("), must be written as

these are. For example:

"I shouted, 'Shame'." → ' "I shouted,' 'Shame' '." '

(3) When a character string is enclosed with double quotation marks ("), these

double quotation marks must be doubled. Other characters, including single

quotation marks ('), must be written as these are. For example:

"I shouted, 'Shame'." → " " "I shouted, 'Shame'." " "

(4) <inserted '> is an single ASCII code set in ASCII code byte 27 (decimal 39 =

symbol '). <inserted "> is a single ASCII code set in ASCII code byte 22

(decimal 34 = symbol "). <non-single quote char> and <non-double quote

char> are single ASCII codes other than single and double quotation marks

(").

5-27

5.3 Program Data Format

5.3.6 <ARBITRARY BLOCK PROGRAM DATA>
<ARBITRARY BLOCK PROGRAM DATA> is non-decimal program data
starting with a number code, or a sharp, (#). Binary data is transferred directly in
1 byte (8 bit) blocks. Differences from the non-decimal numeric program data
(<NON-DECIMAL NUMERIC PROGRAM DATA>) additionally described in
the Section 5.3.4 "<NON-DECIMAL NUMERIC PROGRAM DATA>" are as
follows:
• Data is not limited to numeric data, but character string data and numeric data

can be handled.
• The number of data bytes to be transferred can be written between a number

code, or a sharp, (#) , and the first data.

The non-decimal data is program data that can specify the data bytes to be trans-
ferred.

<non-zero digit>

#

0 NL

<digit> <8-bit data byte>

<8-bit data byte> ∧ END

<digit> One of ASCII code bytes 30 to 39 (decimal values 48 to 57
= characters 0 to 9).

<non-zero digit> One of ASCII code bytes 31 to 39 (decimal values 49 to 57
= characters 1 to 9).

<8-bit data byte> An 8 bit byte within the range from 00 to FF (decimal val-
ues 0 to 255).

(1) When the number of data bytes to be transferred is known
The upper-right route in the above syntactical chart is applied.
Specify the number of <8-bit data byte> bytes to be transferred at the <digit>
position, i.e., just before writing data. Write the number of digits of the
specified number of bytes between a number cord, or sharp, (#) and <non-
zero digit>. For example, to send 4 data bytes (DABs), write <ARBI-
TRARY BLOCK PROGRAM DATA> as follows:

To send 4 bytes, specify 4 at the <digit> position.
↓

#14<DAB><DAB><DAB><DAB>
↑

The number of digits of the value 4 at the <digit> position is 4. So specify
1 at the <non-zero digit> position.

To send 4 bytes, specify 4 at the <digit> position. Leading 0s may be
specified.

↓
#3004<DAB><DAB><DAB><DAB>

↑
The number of digits of the value 4 at the <digit> position is 3. Specify 3

at the <non-zero digit> position.

Section 5 Listener Input Formats

5-28

(2) When the number of data bytes to be transferred is unknown

The lower-right route in the above syntactical chart is applied. Write #0

before the first data and write NL^END after the last data, causing exitless

termination.

#0<DAB><DAB><DAB><DAB><DAB>NL∧ END

(3) Handling integer-precision binary data

Integer-precision binary data is used as <ARBITRARY BLOCK>-type

transfer data, whether it is program data or response data, and has the speci-

fications summarized in the Table 5-3. Negative values are processed as

two's complements.

Table 5-3

Number of transfer bytes

Byte transfer order

Signed binary code

Unsigned binary code

1, 2, 4, or 8 bytes

Bytes are transferred sequentially, starting at the most significant byte.

LSD ········· Right-justify

MSB ········ Sign bit

When the data length is shorter than the field length, pad the remaining field with MSBs.

LSD ········· Right-justify

MSB ········ Not a sign bit

Pad unused high-order bits with 0s.

Ranges of signed and unsigned 1 byte (8 bit) and 2 byte (16 bit) integer data are

shown below.

8-Bit Binary With Sign No Sign

10000000 –128 128

10000001 –172 129

10000010 –126 130

11111101 –3 253

11111110 –2 254

11111111 –1 255

00000000 0 0

00000001 1 1

00000010 2 2

00000011 3 3

01111101 125 125

01111110 126 126

01111111 127 127

16-Bit Binary With Sign No Sign

1000000000000000 –32768 32768

1000000000000001 –32767 32769

1000000000000010 –32766 32770

1111111111111101 –3 65533

1111111111111110 –2 65534

1111111111111111 –1 65535

0000000000000000 0 0

0000000000000001 1 1

0000000000000010 2 2

0000000000000011 3 3

0111111111111101 32765 32765

0111111111111110 32766 37266

0111111111111111 32767 32767

5-29

5.3 Program Data Format

Internal representations of signed 1, 2, 3, 4, and 8 byte integer data are shown

below. When the sign bit is 0, it indicates positive data. When a sign bit is 1, it

indicates negative data.

(Integer part)

7

7

0

1 bytes 2 bytes 3 bytes 4 bytes

1 bytes 2 bytes

1 bytes 2 bytes

3 bytes 4 bytes

5 bytes 6 bytes 7 bytes 8 bytes

015 14 8

7 015162324313239404748555663 8

7 01516232431 8

(Integer part)

(Integer part)

(Integer part)

Decimal point

Decimal point

Decimal point

Decimal point

The decimal point position is fixed at the right of the LSB bit,

these data are also called fixed-point binary numbers. As the

decimal point position is fixed, digits below the decimal point

are discarded if an attempt is made to set data containing these

digits (below the decimal point), that is, integer data is set in

the integer part. For unsigned data, all bits are set in the

integer part.

S
ign

S
ign

S
ign

S
ign

Section 5 Listener Input Formats

5-30

(4) Floating-point binary data

Floating-point binary data, whether it is <PROGRAM DATA> or <RE-

SPONSE DATA>, is used as <ARBITRARY BLOCK>-type transfer data.

Our products do not support floating-point binary data; however, general

specifications are explained below.

Floating-point binary data must consists of the following three fields:

(a) Sign field (sign bit)

(b) Exponent field (exponent bit)

(c) Mantissa field (mantissa bit)

Numeric data having a decimal point is handled here. It has two types of

precision: single precision and double precision. Field structures and trans-

fer orders are shown in the Table

5-4. Meanings of symbols are as follows:

Table 5-4

Precision

Single

precision

Double

precision

Number of transfer bytes

4 bytes

8 bytes

Field structure and transfer order

DIO line
Transfer byte

1st byte

2nd byte

3rd byte

4th byte

DIO line
Transfer byte

1st byte

2nd byte

3rd to 7th byte

8th byte

8

S

EL

F

F

7

EM

FM

F

F

6

E

F

F

F

5

E

F

F

F

4

E

F

F

F

3

E

F

F

F

2

E

F

F

F

1

E

F

F

FL

Sign bit : 1 bit

Exponnent bit : 8 bits (+127 to –126)

Mantissa bit : 23 bits

Sign bit : 1 bit

Exponnent bit : 11 bits (+1023 to –1022)

Mantissa bit : 52 bits

8

S

E

F

F

7

EM

E

F

F

6

E

E

F

F

5

E

EL

F

F

4

E

FM

F

F

3

E

F

F

F

2

E

F

F

F

1

E

F

F

FL

5-31

5.3 Program Data Format

5.3.7 <EXPRESSION PROGRAM DATA>

The <EXPRESSION PROGRAM DATA> element sends the expression for ob-

taining a scalar, vector, matrix, or string value to a device, allowing the device to

calculate a value in place of the controller. Its coding syntactical chart is as fol-

lows:

<expression>()

<expression>: A sequence of ASCII characters represented by ASCII code

bytes 20-7E (decimal values = 32 to 126), excluding the fol-

lowing six characters:

" double quotation mark

............... number code (sharp)

' single quotation mark

(................ parenthesis (left)

) parenthesis (right)

: semi-colon

If a+b+c is written as <expression>, then the above syntactical chart will be ex-

pressed as

(a+b+c)

To transfer this to a device, <PROGRAM DATA> discussed on pages 4-16 to 4-

35 can be used with the exception of the <INDEFINITE LENGTH ARBITRARY

BLOCK PROGRAM DATA>. Upon receipt of (<expression>), the device ob-

tains the solution to this expression.

NOTE:
The MT9810B does not support the <expression> function. If calcula-

tion of an expression is required, the solution to the expression must be

obtained by the controller and the resultant numeric data must be trans-

ferred to the device as <PROGRAM DATA>.

Section 5 Listener Input Formats

5-32.

6-1

Device messages transferred between the controller and devices are classified

into program messages and response messages.

This section explains the formats of the program messages sent from a talker to a

listener.

6.1 Differences in Syntax between Listener Input Formats and Talker

Output formats ... 6-3

6.2 Response Message Functional Elements 6-4

6.2.1 <TERMINATED RESPONSE MESSAGE>................. 6-4

6.2.2 <RESPONSE MESSAGE TERMINATOR> 6-4

6.2.3 <RESPONSE MESSAGE> ... 6-5

6.2.4 <RESPONSE MESSAGE UNIT SEPARATOR> 6-5

6.2.5 <RESPONSE MESSAGE UNIT>................................ 6-6

6.2.6 <RESPONSE HEADER SEPARATOR>..................... 6-6

6.2.7 <RESPONSE DATA SEPARATOR> 6-7

6.2.8 <RESPONSE HEADER> .. 6-7

6.2.9 <RESPONSE DATA> ... 6-9

Section 6 Talker Output Format

Section 6 Talker Output Format

6-2

Typical response messages are: measurement result, setting, and status informa-

tion. Response messages are classified into those with header and those without

header.

The following diagram shows that when the message unit of a setting wavelength

query and a measurement range query is sent to the power meter unit inserted into

Channel 1, each response message is sent from the device to the controller in

ASCII strings with a header.

<RESPONSE DATA>

-10

<RESPONSE DATA>

1550E-9

<RESPONSE HEADER>

SENSE1: POWER: WAVELENGTH

<RESPONSE HEADER>

SENSE1: POWER: RANGE: UPPER

SENSE1: POWER: RANGE: UPPER -10SENSE1: POWER: WAVELENGTH 1550E-9

Listener

(device)

Address15

Talker

(controller)
SENSE1: POWER: WAVELENGTH 1550E-9 ; SENSE1: POWER: RANGE: UPPER-10 <NL>)

<RESPONSE MESSAGE>

<RESPONSE MESSAGE UNIT> <RESPONSE MESSAGE UNIT> <NL>

NL

<RESPONSE MESSAGE UNIT SEPARATOR>

<RESPONSE MESSAGE TERMINATOR>

<TERMINATED RESPONSE MESSAGE>

;

<RESPONSE HEADER SEPARATOR>

sp

<character response data>

1550E-9

<character response data>

-10

<response mnemonic>

SENSE1: POWER: WAVELENGTH

sp

<PROGRAM HEADER SEPARATOR>

The above operation portions can be described as a program, as shown below.

Call Send (0,15,"SENSE1:POWER:WAVELENGTH?;SENSE1:POWER:

 RANGE:UPPER?",NLend)†1

Call Receive (0,15,buf1,NLend)†2

NOTE †1:

Sends a query message unit of the setting wavelength and measurement

range.

NOTE †2:

If the terminator NL is detected, the response message

SENSE1:POWER:WAVELENGTH 1550E-9; SENSE1:POWER:

RANGE:UPPER -10 are read into buf1.

A response message is a sequence of functional elements, the minimum units that

can represent functions, as is the case with the program message. In the above

figure, functional elements are indicated by uppercase characters enclosed in the

brackets (< >). Functional elements are further classified into coding elements

which are indicated by lowercase characters enclosed in the brackets (< >).

The following pages explain talker output formats focusing on the differences

from listener input formats starting with the Section 6.1 "Differences in Syntax

between Listener Input Formats and Talker Output formats."

6-3

6.1 Differences in Syntax between Listener Input For-

mats and Talker Output formats
Significant differences in syntax between the listener and the talker are as fol-

lows:

Listener format Program can be written flexibly so that devices can accept

program messages from the controller. If a program mes-

sage involves some description errors, it can execute its

function normally. For example, unlimited number of

<white space> element can be used in order to make an

easy-to-read program.

Talker format Messages are output following strictly defined syntactical

rules to allow the controller to accept the response messages

from the device. Therefore, the syntax of response mes-

sages permits only one notation for a function.

The summary of the differences in output format between the listener and the

talker is shown in the Table 6-1. In this table, "0/1 or more spaces" indicates

<white space>.

Table 6-1

Characteristic

Alphabetic characters

Character before and after

NR3 exponent part E

+ sign of NR3 exponent part

<white space>

Message unit

Unit separator

Space before header

Header separator

Data separator

Terminator

(Flexible)

No difference between uppercase

0 or more spaces + E/e + 0 or more spaces

Omissible

Two or more white spaces can be written before/after a sep-

arator or before a terminator.

(a) Header with program data

(b) Header without program data

0 or more spaces + Semicolon

0 or more spaces + Header

Header + 1 or more spaces

0 or more spaces + Comma + 0 or more spaces

0 or more spaces + One of

(Strict)

Uppercase characters only

Uppercase character E

only

Required

Not used

(a) Data with header

(b) Data without header

Semi-colon only

Header only

Header + One $20 †1｠
Comma only

NL+EOI
NL
EOI
NL+EOI

Item Listener input program message syntax
Talker output response

message syntax

NOTE:
ASCII code byte 20 (decimal value 32 = ASCII character SP, space)

6.1 Differences in Syntax between Listener Input Formats and Talker Output formats

Section 6 Talker Output Format

6-4

6.2 Response Message Functional Elements
Response messages output from a talker are terminated with an NLŸEND signal,

allowing the controller to accept these messages. Functional elements of these

response messages are explained here.

Rules for syntactical chart notation are the same as those for program messages.

Refer to the Section 5 "Listener Input Format" for the information. Also func-

tional and coding elements, which are the same as those of program messages, are

not explained in this section. Refer to the Section 5 "Listener Input Format" as

well.

6.2.1 <TERMINATED RESPONSE MESSAGE>

<TERMINATED RESPONSE MESSAGE> is defined as follows:

<RESPONSE MESSAGE>

Refer to 6.2.3

<RESPONSE

MESSAGE TERMINATOR>

Refer to 6.2.2

<TERMINATED RESPONSE MESSAGE> is a data message having all the nec-

essary functional elements to be sent from a talker to a device.

To complete transfer of <RESPONSE MESSAGE>, <RESPONSE MESSAGE

TERMINATOR> is added at the end of <RESPONSE MESSAGE>.

6.2.2 <RESPONSE MESSAGE TERMINATOR>
<RESPONSE MESSAGE TERMINATOR> is defined as follows:

∧ ENDNL

<RESPONSE MESSAGE TERMINATOR> is placed after the last <RE-

SPONSE MESSAGE UNIT> to terminate the sequence of one or more fixed-

length <RESPONSE MESSAGE UNIT> elements.

6-5

6.2.3 <RESPONSE MESSAGE>

<RESPONSE MESSAGE> is defined as follows:

<RESPONSE

MESSAGE UNIT

SEPARATOR>

Refer to 6.2.4

<RESPONSE MESSAGE UNIT>

Refer to 6.2.5

<RESPONSE MESSAGE> is a sequence of one or more <RESPONSE

MESSAGE UNIT> elements.

The <RESPONSE MESSAGE UNIT> element is a single message sent from a

device to a controller. A <RESPONSE MESSAGE UNIT SEPARATOR> is

used as a separator for separating multiple <RESPONSE MESSAGE UNIT> ele-

ments.

6.2.4 <RESPONSE MESSAGE UNIT SEPARATOR>

<RESPONSE MESSAGE UNIT SEPARATOR> is defined as follows:

;

<RESPONSE MESSAGE UNIT SEPARATOR> is used to separate <RE-

SPONSE MESSAGE UNIT> elements with a <UNIT SEPARATOR>, or a semi-

colon (;), when outputting a sequence of multiple <RESPONSE MESSAGE

UNIT> elements as one <RESPONSE MESSAGE>.

6.2 Response Message Functional Elements

Section 6 Talker Output Format

6-6

6.2.5 <RESPONSE MESSAGE UNIT>

<RESPONSE MESSAGE UNIT> is defined as follows:

<RESPONSE DATA>

Refer to 6.2.9

<RESPONSE

DATA SEPARATOR>

Refer to 6.2.7

<RESPONSE

HEADER SEPARATOR>

Refer to 6.2.6

<RESPONSE DATA>

Refer to 6.2.9

<RESPONSE

DATA SEPARATOR>

Refer to 6.2.7

<RESPONSE

HEADER>

Refer to 6.2.8

There are two kinds of useage for <RESPONSE MESSAGE UNIT>. One is

<RESPONSE MESSAGE UNIT> with header, which returns the result of pro-

cessing the program-message-set information accurately. The other is <RE-

SPONSE MESSAGE UNIT> without header, which returns only the measure-

ment result.

6.2.6 <RESPONSE HEADER SEPARATOR>

<RESPONSE HEADER SEPARATOR> is defined as follows:

SP

<RESPONSE HEADER SEPARATOR> is one space written after <RESPONSE

HEADER> to be separated from <RESPONSE DATA>.

The space SP corresponds to ASCII code byte 20 (decimal 32).

In a <RESPONSE MESSAGE> with header, a space must always exist between

the header and the data as a <RESPONSE HEADER SEPARATOR>. The sepa-

rator indicates the end of the <RESPONSE HEADER> as well as the beginning

of <RESPONSE DATA> at the same time.

6-7

6.2 Response Message Functional Elements

6.2.7 <RESPONSE DATA SEPARATOR>

<RESPONSE DATA SEPARATOR> is defined as follows:

,

When multiple <RESPONSE DATA> elements are output, <RESPONSE DATA

SEPARATOR> must be placed between these data elements.

6.2.8 <RESPONSE HEADER>

The format of <RESPONSE HEADER> is the same as that of <COMMAND

PROGRAM HEADER> described in the Section 5.2.8 "<COMMAND PRO-

GRAM HEADER>" with the exception of the following three points:

(1) Characters that can be used in <response mnemonic> are specified. For al-

phanumeric characters, only uppercase characters must be used. Other

points are the same as those of <program mnemonic>.

(2) A space cannot be written before a <RESPONSE HEADER>, while it can be

written before a <PROGRAM HEADER>.

(3) Only one space can be written before a <RESPONSE HEADER>, while two

or more spaces can be written before a <PROGRAM HEADER>.

Refer to the Table 6-2 for the response header up to <response mnemonic>.

It should be noted that only uppercase characters must be used in <response mne-

monic>. Other points are the same as those of <program mnemonic> described in

the Section 5.2.8 "<COMMAND PROGRAM HEADER>."

Section 6 Talker Output Format

6-8

Table 6-2

Item Function

<response mnemonic>

Refer to (4)

<simple response header>

Refer to (1)

<compound response header>

Refer to (2)

<common response header>

Refer to (3)

<response mnemonic>

Refer to (4)
∗

<response

mnemonic>

Refer to (4)

<response

mnemonic>

Refer to (4)

: :

RESPONSE HEADER A header indicates a function of <RESPONSE DATA>. It explains the function

with a 12-character-long character-long character string or a <response mnemo-

nic> element that consists of uppercase characters, numeric characters, and/or

underline.

(1) <simple response header> is defined as follows.

(2) <compound response header> is defined as follows.

(3) <common response header> is defined as follows.

(4) <response mnemonic> is defined as follows.

NOTE †1:
<upper-case alpha> ASCII code bytes 41 to 5A

(decimal values 65 to 90 = uppercase characters A to Z)

<upper-case

alpha>†1

<upper-case

 alpha>†1

<digit>

Refer to (4) of 5.2.8

_

6-9

6.2 Response Message Functional Elements

6.2.9 <RESPONSE DATA>

There are 11 types of <RESPONSE DATA> elements. Among these, the

MT9810B transfers the <RESPONSE DATA> shown in the hollow squares sur-

rounded by a shade. The <RESPONSE DATA> to be returned depends on the

query message.

<CHARACTER

RESPONSE DATA>

<NR1 NUMERIC

RESPONSE DATA>

<NR2 NUMERIC

RESPONSE DATA>

<NR3 NUMERIC

RESPONSE DATA>

<HEXADECIMAL

NUMERIC RESPONSE DATA>

<OCTAL NUMERIC

RESPONSE DATA>

<BINARY NUMERIC

RESPONSE DATA>

<STRING

RESPONSE DATA>

<DEFINITE LENGTH

ARBITRARY BLOCK RESPONSE DATA>

<INDEFINITE LENGTH

ARBITRARY BLOCK RESPONSE DATA>†1

<ARBITRARY ASCII

RESPONSE DATA>†1

Refer to (1) of 6.2.9

Refer to (2) of 6.2.9

Refer to (3) of 6.2.9

Refer to (4) of 6.2.9

Refer to (5) of 6.2.9

Refer to (6) of 6.2.9

Refer to (7) of 6.2.9

Refer to (8) of 6.2.9

Refer to (9) of 6.2.9

Refer to (10) of 6.2.9

Refer to (11) of 6.2.9

NOTE†1:
<INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE

DATA> and <ARBITRARY ASCII RESPONSE DATA> is terminated

with NLŸEND after the last byte has been transferred.

Section 6 Talker Output Format

6-10

Table 6-3

Item Function

<response mnemonic>

Refer to (4) of 6.2.8

(1) CHARACTER

RESPONSE DATA

(2) NR1 NUMERIC

RESPONSE DATA

<Example>

123

+123

–1234

(3) NR2 NUMERIC

RESPONSE DATA

<Example>

12.3

+12.34

–12.345

(4) NR3 NUMERIC

RESPONSE DATA

<Example>

1.23E+4

+12.34E–5

–12.345E+6

• Lowercase

characters cannot be

used for E.

• E must not be

preceded and

followed by a space.

• + in the exponent part

is mandatory.

• + in the mantissa part

is mandatory.

Data consisting of the same character string as that of <response mnemonic>.

Accordingly, the character string always begins with an uppercase character and

its length is less than 12 characters. Numeric parameters must not be used.

Integer data, i.e., a decimal value of an integer that has neither decimal point nor

exponent.

Fixed-point data, i.e., a decimal value other than integers or a decimal value hav-

ing an exponent.

Fixed-point data, i.e., a decimal value having an exponent.

<digit>

Refer to (4) of 5.2.8

+

–

<digit>

Refer to (4)

of 5.2.8

+

.

–

<digit>

Refer to (4)

of 5.2.8

<digit>

Refer to (4)

of 5.2.8

+

.

–

<digit>

Refer to (4)

of 5.2.8

+

E

–

<digit>

Refer to (4)

of 5.2.8

6-11

6.2 Response Message Functional Elements

Table 6-3 (continue)

Item Function

Q

2

3

4

5

6

7

1

0

B

1

0

#

<digit>

H C

D

E

F

B

A

#

(5) HEXADECIMAL

NUMERIC RESPONSE

DATA

<Example>

#HABC123

#H2DC3

#H8301

(6) OCTAL NUMERIC

RESPONSE DATA

<Example>

#Q37

#Q26703

#Q30562

(7) BINARY NUMERIC

RESPONSE DATA

<Example>

#B011101

#B1011

#B1011

Data represented in hexadecimal notation.

Data represented in octal notation.

Data represented in binary notation.

Section 6 Talker Output Format

6-12.

Table 6-3 (continue)

Item Function

"

<inserted">

<non-double

quote char>

"

"

<non-zero

digit>

Refer to

5.3.6

#
<digit>

Refer to

5.3.6

<8-bit

data byte>

Refer to 5.3.6

NL

<8-bit

data byte>

Refer to 5.3.6

0 ∧ END

NL<ASCII data byte> ∧ END

(8) STRING RESPONSE

DATA

<Example>

"This is a text"

"Say,""Hello""."

(9) DEFINITE LENGTH

ARBITRARY BLOCK

RESPONSE DATA

<Example>

Transferring 11256099D

in a 4-byte blocks

 ↓
#1400ABC123

(10) INDEFINITE LENGTH

ARBITRARY BLOCK

RESPONSE DATA

<Example>

Indefinite-length

–250, –50, 120, ...

are transferred

 ↓
#0FF06FFCE0078

(11) ARBITRARY ASCII

RESPONSE DATA

<Example 1>

<ASCII Byte><ASCII

Byte>NL∧ END

 <Example 2>

NL∧ END

Any ASCII 7-bit code can be used.

The character string must be enclosed with double quotation marks (").

When a character string contains double quotation marks, two identical quotation

marks must be written in succession per quotation mark.

Since a CR, LF, of space can be used, this element is suitable for outputting a text

to the printer or CRT.

Fixed-point 8-bit binary block data.

It is suitable for transferring large-volume data, 8-bit extended ASCII code, and

non-display data. Refer to the Section 5.3.6 "<ARBITRARY BLOCK PRO-

GRAM DATA>" for more details on individual elements.

Indefinite-length 8-bit binary block data.

#0 must be written before the first data.

The last data must be followed by NL∧ END for termination.

ASCII data bytes except NL character transferred in succession.

The last data must be followed by NL∧ END for termination.

7-1

This section explains common commands and common query commands speci-

fied by IEEE 488.2. These common commands are not bus commands which are

used as interface messages. Like device messages, the common commands are

data messages used when the bus data mode (or the ATN line) is False. These

commands can be applied to all measuring instruments, including those of other

companies, that comply with IEEE 488.2. IEEE 488.2 common commands al-

ways begin with an asterisk (∗).

7.1 Classification of Supported Commands and References 7-2

Section 7 Common Commands

Section 7 Common Commands

7-2

7.1 Classification of Supported Commands and Refer-

ences
MT9810B-supported commands discussed previously are classified by function

group as shown in the Table 7-1. Details on these commands are given in alpha-

betical order on the next and subsequent pages.

Table 7-1

Group Function by group Mnemonic

System data

Internal operation

Synchronization

Status and event

Information about device connected to the system (e.g., manufacturer

name, type name, and serial number) is returned.

Control inside the device:

(a) Resetting of device at level 3

(b) Self-test and error detection inside the device

A device is synchronized with the controller by:

(a) Service request wait

(b) Device output queue wait

(c) Forced sequential execution

A status byte consists of a status summary message. Summary bits of

the status summary message are set by a standard event register,

output queue, and extended event register (or an extended queue).

Three commands and four queries are provided to set, clear, validate,

and invalidate the data in these registers and queues and to know the

register settings using queries.

∗ IDN?

∗ OPT?

∗ RST

∗ TST?

∗ OPC

∗ OPC?

∗ WAI

∗ CLS

∗ ESE

∗ ESE?

∗ ESR?

∗ SRE

∗ SRE?

∗ STB?

7-3

*CLS Clear Status Command
(Clears status byte registers)

(1) Format

∗ CLS

(2) Explanation

The ∗ CLS common command clears all status structures (i.e., event registers

and queues) except an output queue and its MAV summary messages, thus

clearing the corresponding summary messages.

Issuing a ∗ CLS command after <PROGRAM MESSAGE TERMINATOR>

or before <QUERY MESSAGE UNIT> will clear all status bytes. With this

method, all unread messages in the output queue will also be cleared. Values

set in enable registers are not changed by the ∗ CLS command.

7

ESB

MAV

3

2

1

0

MSS 6 RQS

Standard event

register

Status summary

message

Status Byte Register

……Output Queue

OPERation

status register

QUEStionable

status register

Error/Event

queue

Not used

SOURce

status register

Service request

occurrence

D
ata

D
ata

D
ata

D
ata

D
ata

∗∗∗∗∗ CLS
Command

7-4

*ESE Standard Event Status Enable Command
(Sets or clears the standard event status enable register)

(1) Format

∗ ESE<HEADER SEPARATOR><DECIMAL NUMERIC PROGRAM

DATA>

In this particular format <DECIMAL NUMERIC PROGRAM DATA> is a

value rounded to an integer, 0 to 255 (base is 2 and binary weights are as-

signed).

(2) Explanation

The total of values (20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, and/

or 27 = 128) corresponding to the standard event status enable register bits 0,

1, 2, 3, 4, 5, 6, and/or 7 that are to be enabled becomes program data. The

value of the bit to be disabled is 0.

disabled=0, enabled=128 (27)

disabled=0, enabled=64 (26)

disabled=0, enabled=32 (25)

disabled=0, enabled=16 (24)

disabled=0, enabled=8 (23)

disabled=0, enabled=4 (22)

disabled=0, enabled=2 (21)

disabled=0, enabled=1 (20)

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

&

&

&

&

&

&

&

&

Logical OR

Power-ON

User request

Command error

Execution error

Device-dependent error

Query error

Bus control request

Operation complete

Standard Event Status

Register

Standard Event Status

Enable Register

To be set in Status Byte Register bit

5, an ESB (Event Summary Bit)

*ESE? Standard Event Status Enable Query
(Returns the current value of the standard event status enable register)

(1) Format

∗ ESE?

(2) Explanation

The value (NR1) of the standard event status enable register is returned.

(3) Response message

NR1 = 0 to 255

∗∗∗∗∗ ESE
Command/Query

7-5

*ESR? Standard Event Status Register Query
(Returns the current value of the standard event status register)

(1) Format

∗ ESR?

(2) Explanation

NR1 is returned as the current value for standard event status register. NR1

is obtained from the sum of the bit digit values enabled by the standard event

status register for 20 = 1, 21 = 2, 22 = 4. 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 =

128. For example, if events occur in bit2 and 4, the value 20 (=22 + 24) is read

and this register is cleared. In addition, the logical OR value enabled by the

standard event status enable register (*ESE) is transmitted to bit 5 of the

status byte register as an event summary bit.

The contents for each bit of the standard event status register are explained in

item 8.4.1. "1" is set to the bit when an event corresponding to each event

occurs.

disabled=0, enabled=128 (27)

disabled=0, enabled=64 (26)

disabled=0, enabled=32 (25)

disabled=0, enabled=16 (24)

disabled=0, enabled=8 (23)

disabled=0, enabled=4 (22)

disabled=0, enabled=2 (21)

disabled=0, enabled=1 (20)

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

&

&

&

&

&

&

&

&

Logical OR

Power-ON

User request

Command error

Execution error

Device-dependent error

Query error

Bus control request

Operation complete

Standard Event Status

Register

Standard Event Status

Enable Register

To be set in Status Byte Register bit

5, an ESB (Event Summary Bit)

(3) Response message NR1

NR1 = 0 to 255

∗∗∗∗∗ ESR?
Query

7-6

*IDN? Identification Query
(Returns the manufacturer name, type name, serial number, and firmware level of the product)

(1) Format

∗ IDN?

(2) Explanation

A manufacturer name, type name, serial number, and firmware level are returned.

Software version

0

MT9810B

ANRITSU

When the manufacturer of the product, whose type name, serial number, and

software/hardware version number are Anritsu, 0, and 1 respectively. Send-

ing a common query ∗ IDN? to a device will return a response message con-

sist of the above four fields.

Field 1 Product manufacturer (e.g., ANRITSU)

Field 2 Type name

Field 3 Serial number (e.g., 0)

Field 4 Firmware version No. (control software version and optical soft-

ware version)

Return ASCII character "0" to not to return a serial number and firmware

version in fields 3 and 4.

(3) Response message

A response message which consists of the above four fields separated by

commas is sent as <ARBITRARY ASCII RESPONSE DATA>.

<Field 1>,<Field 2>,<Field 3>,<Field 4>

Overall length of the response message is less than 72 characters.

∗∗∗∗∗ IDN?
Query

7-7

∗∗∗∗∗ OPC
Command/Query

*OPC Operation Complete Command
(Sets bit 0 of the standard event status register when device operations have been completed)

(1) Format

∗ OPC

(2) Explanation

When all the pending device operations have been completed, standard event

status register bit 0 (i.e., operation complete bit) is set. However, since the

MT9810B does not have an overlap command, the ∗ OPC command counts

for nothing.

enabled=20

7

ESB

MAV

3

2

1

0

MSS 6 RQS

……Output Queue1

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

&

&

&

&

&

&

&

&

Logical OR

Power-ON

User request

Command error

Execution error

Device-dependent error

Query error

Bus control request

Operation complete

Standard Event Status

Register

Standard Event Status

Enable Register

Status Byte Register

*OPC? Operation Complete Query
(When device operations have been completed, sets "1" in the output queue to generate an MAV

summary message)

(1) Format

∗ OPC?

(2) Explanation

When all the pending device operations have been completed, "1" is set in

the output queue, waiting for an MAV summary message to occur.

(3) Response message

"1" is returned as <NR1 NUMERIC RESPONSE DATA>.

7-8

*RST Reset Command
(Rests a device at level 3)

(1) Format

∗ RST

(2) Explanation

The ∗ RST (Reset) command resets a device at level 3 (Refer to the Table 4-

1). At level 3, the following items are initialized:

(a) Device-dependent functions and states are restored to known states irre-

spective of the device history.

(b) The macro defined by ∗ DDT command is restored to the device-defined

state.

(c) A mode in which macro operation is disabled and macros are not ac-

cepted, is set. Macro definitions are restored to the designer-specified

states.

(d) The specified device is set in the OCIS. The operation complete bit

cannot be set in the standard event status register.

Section 8.1

(e) The specified device is set in the OQIS. The operation complete bit

cannot be set in the output queue. The MAV bit is cleared.

The ∗ RST command does not affect the following:

(a) IEEE 488.1 interface state

(b) Device address

(c) Output queue

(d) Service request enable register

(e) Standard event status enable register

(f) Power-on-status-clear flag setting

(g) Calibration data affecting device standard

(h) RS-232C interface condition

∗∗∗∗∗ RST
Command

7-9

*OPT?
Query

*OPT? Option Identification Query
(Reports an installed option list)

(1) Format

∗ OPT?

(2) Explanation

States of installed options are returned using 1 or 0.

(3) Response message

A response message which consists of the above three fields separated by

commas is sent as <ARBITRARY ASCII RESPONSE DATA>.

Since there is no option now "0" is returned.

7-10

*SRE Service Request Enable Command
(Sets a service request enable register bit)

(1) Format

∗ SRE<HEADER SEPARATOR><DECIMAL NUMERIC PROGRAM

DATA>

In this particular format <DECIMAL NUMERIC PROGRAM DATA> is a

value rounded to an integer, 0 to 255 (base is 2 and binary weights are as-

signed).

(2) Explanation

The total of values (20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, and/or 27 =

128) corresponding to the service request enable register bits 0, 1, 2, 3, 4, 5,

6, and/or 7 that are enabled becomes NR1. The value of the bit to be disabled

is 0.

Logical OR

Service Request

Generation

ESB

MAV

ESB (ERROR)

ESB (END)

Not used

Not used

7

5

4

3

2

1

0

7

5

4

3

2

1

0

&

&

&

&

&

&

&

Status Byte RegisterService Request Enable Register

MSS 6 RQS

disabled=0, enabled=128 (27)

Not used

disabled=0, enabled=32 (25)

disabled=0, enabled=16 (24)

disabled=0, enabled=8 (23)

disabled=0, enabled=4 (22)

disabled=0, enabled=2 (21)

disabled=0, enabled=1 (20) S
ta

tu
s

su
m

m
ar

y
m

es
sa

ge

*SRE? Service Request Enable Query
(Returns the current value of the service request enable register)

(1) Format

∗ SRE?

(2) Explanation

The value NR1 of the service request enable register is returned.

(3) Response message NR1

Since NR1 = bit 6 (RQS bit) cannot be set, NR1 = 0 to 63 or 128 to 191.

∗∗∗∗∗ SRE
Command/Query

7-11

∗∗∗∗∗ STB?
Query

*STB? Read Status Byte Command
(Returns the current value of the status byte including the MSS bit)

(1) Format

∗ STB?

(2) Explanation

The ∗ STB? command returns the total of the status register value assigned

binary weights and MSS (master Summary Status) summary message value

as <NR1 NUMERIC RESPONSE DATA>.

(3) Response message

A response message (<NR1 NUMERIC RESPONSE DATA>) is an integer

ranging from 0 to 255. It is the total of status byte register bit values. Status

byte register bits 0 to 5 and 7 is assigned weights 1, 2, 4, 8, 16, 32, and 128

respectively, and the MSS bit is assigned weight 64. The MSS indicates that

there is at least one reason for requesting a service. The status byte register

conditions of MT9810B are summarized in the Table 7-2.

Logical OR

Service Request

Generation

OPER

ESB

MAV

QUES

QUE

Not used

SOUR

7

5

4

3

2

1

0

7

5

4

3

2

1

0

&

&

&

&

&

&

&

Status Byte RegisterService Request Enable Register

MSS 6 RQS

disabled=0, enabled=128 (27)

Not used

disabled=0, enabled=32 (25)

disabled=0, enabled=16 (24)

disabled=0, enabled=8 (23)

disabled=0, enabled=4 (22)

disabled=0, enabled=2 (21)

disabled=0, enabled=1 (20) S
ta

tu
s

su
m

m
ar

y
m

es
sa

ge

Table 7-2

Status byte register conditions
1=Status transition at OPERation status register. 0=None

1=Service request for bit 7 or bit 5 to 0. 0=None

1=Status transition at standard event status register. 0=None

1=Data is in the output queue. 0=None

1=Status transition at QUEStionable status register. 0=None

1=Data is in the Error/Event queue. 0=None

Not used

1=Status transition at 1=SOURce status register. 0=None

Bit weights
128

64

32

16

8

4

2

1

Bit
7

6

5

4

3

2

1

0

Bit name
OPER

MSS/RQS

ESB

MAV

QUES

QUE

SOUR
Refer to Section 8 for details of each status register.

7-12

*TST? Self-Test Query
(Conducts an internal self-test and indicates whether any error has occurred)

(1) Format

∗ TST?

(2) Explanation

The ∗ TST? command conducts a self-test inside the device. The test result is

set in the output queue. The data in the output queue indicates that the test

has been completed without causing any error. The self-test does not require

operator intervention.

(3) Response message

A response message is sent as <NR1 NUMBER RESPONSE DATA>.

Data range = –32767 to 32767

NR1 = –The test has been completed without causing any error.

NR1 = 1The test has not been conducted or any error occurred during the

test.

∗∗∗∗∗ TST?
Query

7-13

*WAI Wait-to-Continue Command
(Causes the next command to wait until the current command has been executed by the device)

(1) Format

∗ WAI

(2) Explanation

The ∗ WAI command executes overlap commands as sequential commands.

If the device can start executing the next command while processing a com-

mand or query from the controller, the command or query is called an over-

lap command.

If a ∗ WAI command is executed after an overlap command, the next com-

mand must wait for the ∗ WAI common command to end. This also applies

to sequential commands.

However, since the MT9810B does not support overlap commands. The

∗ WAI command counts for nothing.

∗∗∗∗∗ WAI
Command

Section 7 Common Commands

7-14 .

8-1

This section explains the device status data specified by IEEE 488.2, the status

data structure, and the technique of synchronization between a device and a con-

troller.

8.1 IEEE 488.2 Standard Status Model 8-3

8.2 Status Byte Register .. 8-5

8.2.1 ESB and MAV Summary Message 8-5

8.2.2 Device Dependent Summary Message 8-6

8.2.3 Reading and Clearing the Status Byte Register 8-7

8.3 Enabling the SRQ .. 8-9

8.4 Standard Event Status Register ... 8-10

8.4.1 Definition of Standard Event Status Register Bits 8-10

8.4.2 Details on Query Errors .. 8-11

8.4.3 Reading, Writing, and Clearing the Standard

Event Status Register ... 8-12

8.4.4 Reading, Writing, and Clearing the Standard

Event Status Enable Register 8-12

8.5 Queue Model .. 8-13

8.6 Extended Status Bytes ... 8-15

8.6.1 Status register ... 8-16

8.6.2 Operation Status Register ... 8-19

8.6.3 QUESTIONABLE Status Register 8-22

8.6.4 SOURCE status register ... 8-25

Section 8 Status Structure

Section 8 Status Structure

8-2

The status byte (STB) sent to the controller is specified by IEEE 488.1. The bits

of the status byte represent a status summary message, providing a summary of

the current contents of the data stored in a register or queue.

The following sections explain the status summary message bits, the status data

structure for generating these status summary message bits, and the technique of

synchronizing a device with the controller using the status messages.

These functions are used to control devices from an external controller via the

GPIB interface. These functions, except a few, can also be used to control de-

vices from an external controller via the RS-232C interface.

8-3

8.1 IEEE 488.2 Standard Status Model
The diagram shown below is the standard model of the status data structure speci-

fied by IEEE 488.2.

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

⋅
⋅
⋅
⋅

Data

Data

Data

Data

Data

Data

&

&

&

&

&

&

&

&

Logical OR

Logical OR

ESB

MAV

Standard Event Status RegisterStandard Event Status

Enable Register

Output Queue

7

5

4

3

2

1

0

7

5

4

3

2

1

0

&

&

&

&

&

&

&

Status Byte

Register

Service Request

Enable Register

Read by ∗ ESR?

Read by ∗ STB?

Set with ∗ ESE <NRf>

Read with ∗ ESE?

Set with ∗ SRE <NRf>.

Read with ∗ SRE?.

Read in the serial poll mode.

MSS 6 RQS

Service Request

Generation

S
tatus sum

m
ary m

essage

Power-ON (PON)

User request (URQ)

Command error (CME)

Execution error (EXE)

Device-dependent error (DDE)

Query error (QYE)

Bus control request (RQC)

Operation complete (OPC)

Fig. 8-1 Standard status model

8.1 IEEE 488.2 Standard Status Model

Section 8 Status Structure

8-4

The status model uses an IEEE 488.1 status byte. This status byte consists of

seven summary message bits provided by the status data structure. To generate
these summary message bits, the status data structure is comprised of two models:
a register model and a queue model.

Register model
A pair of registers used to record an event that a device has encountered and a
condition. It consists of an event status register and an event status enable regis-
ter. When the results of ANDing the values of bits of these registers is not 0, the

corresponding status register bits are set to 1s. In other cases, the corresponding
status register bits are set to 0s. If the result of ORing the values of status register
bits is 1, the summary message bit is set to 1. If the result of ORing these bits is 0,
the summary message bit is set to 0.

Queue model
A data structure in which status values or information are removed in the same
order of which those were entered. Only when the queue structure contains data,
the corresponding bit is set to 1. If it is empty, the corresponding bit is set to 0.

Based on the concept of the above register model and queue model, the IEEE
488.2 standard status model is constructed from two types of register models and
a queue model.

(1) Standard event status register and standard event status enable
register
This register has the register model structure mentioned above. It has eight
bits corresponding to eight standard events listed below encountered by the
device.
(a) power on
(b) user request
(c) command error

(d) execution error
(e) device dependent error
(f) query error
(g) bus control request
(h) operation complete.
The result of logical OR is output to the status byte register bit 5 (DIO 4) as

an event status bit (ESB) summary message.
(2) Status byte (STB) register and service request enable (SRE) reg-

ister
The status byte register consists of an RQS bit and seven summary message
bits for setting status summary messages from the status data structure. It is
used in combination with a service request enable register. When the result

of ORing the values of these two registers is 0, the SRQ is set ON. In this
case, the status byte register bit "DIO 7" is reserved by the system as an RSQ
bit, so this bit indicates to an external controller that a service request exists.
The function of the SRQ conforms to IEEE 488.1.

(3) Output queue
This queue has the queue model structure mentioned above. Its contents are

summarized and transferred to the status byte register bit 4 (DIO 5) as a
MAV (message available) summary message.

8-5

8.2 Status Byte Register
The status byte register consists of device STB and RQS (or MSS) messages.

IEEE 488.1 defines the method of reporting STB and RQS messages, but it does
not define the setting and clearing protocols and STB meaning. IEEE 488.2 de-
fines device status summary messages and MSS transferred to bit 6 along with an
STB in response to the ∗ STB? common query.

8.2.1 ESB and MAV Summary Message
The followings are the explanations of an ESB summary message and an MAV
summary message.

(1) ESB summary message
The ESB (event summary bit) summary message is defined by IEEE 488.2.
It appears in status byte register bit 5. This bit indicates whether one or more

IEEE 488.2 defined events have occurred, with the service request enable
register set to allow events to occur, after the standard event status register
was read or cleared last. The ESB summary message bit becomes True when
at least one event registered in the standard event status register becomes
True with event occurrence enabled. Conversely, the ESB summary bit be-
comes False when none of the registered events has occurred even if event

occurrence is enabled.

(2) MAV summary message
The MAV (message available) summary message is defined by IEEE 488.2.
It appears in status byte register bit 4. This bit indicates whether the output
queue is empty. When a device is ready for accepting response messages
from the controller, the MAV summary message bit becomes 1 (True).

When the output queue is empty, this bit becomes 0 (False). This message is
used to synchronize information exchange with the controller. For example,
the controller can send a query message to the device and wait for the MAV
to become True. The controller can perform another processing while wait-
ing for a response from the device. If the controller has started reading the
output queue without checking the MAV, all system bus operations are sus-

pended until a response is received from the device.

8.2 Status Byte Register

Section 8 Status Structure

8-6

8.2.2 Device Dependent Summary Message

IEEE 488.2 does not define whether status register bit 7 (DIO 8) and bit 3 (DIO 4)

to bit 0 (DIO 1) are used as status register summary bits or the bits indicating

existence of data in the queue. Accordingly, these bits can be used as device

dependent summary message bits.

Device dependent summary messages have a register model or queue model sta-

tus data structure. This status register is a pair of registers used to report events

and states in parallel or a queue used to report states and information sequentially.

The summary bit provides a summary of the current status of the corresponding

status data structure. For the register model, the summary message bit becomes

True when one or more events have become True with occurrence of events en-

abled. For the queue model, the summary message bit becomes True when the

queue is not empty.

Each bit is assigned as shown in the figure below. According to the SCPI stan-

dard, bit 7 is assigned to an event summary bit of OPERation status register, bit 3

to an event summary bit of QUEStionable status register and bit 2 to a summary

bit of Error/Event queue. In addition, bit 0 is not used and bit 1 is assigned to the

event summary bit of the SOURce status register as a device-specific summary

message.

7

ESB

MAV

3

2

1

0

MSS 6 RQS

Standard event

register

Status summary

message

Status Byte Register

……Output Queue

OPERation

Status register

QUEStionable

Status register

Error/Event

Queue

Not used

SOURce

Status register

Service request

occurrence

D
ata

D
ata

D
ata

D
ata

D
ata

8-7

8.2 Status Byte Register

8.2.3 Reading and Clearing the Status Byte Register
Status byte register contents can be read using serial polling or an ∗ STB? com-

mon inquiry. IEEE 488.1 defined STB messages can be read by either method,

but the value transferred to bit 6 (position) varies depending on the method.

status byte register contents can be cleared using a ∗ CLS command.

(1) Reading the status byte register using serial polling (only when
a GPIB interface bus is used)
When IEEE 488.1 defined serial polling is carried out, the device must return

a 7 bit status byte and IEEE 488.1 defined RQS message bit. According to

IEEE 488.1, the RQS message indicates whether the device has issued SRQs

in the True state. The status byte value is not affected by serial polling.

Immediately after being polled, the device must set the rsv message in the

False state. If the device is polled again before a cause of issuing a new

service request occurs, the RQS message has already been set in the False

state.

(2) Reading the status byte register using an ∗∗∗∗∗ STB? common query
The ∗ STB? common query causes the device to output status byte register

contents and one <NR1 NUMERIC RESPONSE DATA> from the MSS

summary message. The response is the total of the status register value as-

signed binary weights and MSS summary message value. Status byte regis-

ter bits 0 to 5 and 7 are assigned weighs 1, 2, 4, 8, 16, 32, and 128 respec-

tively, and the MSS is assigned weights 64. The response to the ∗ STB? is the

same as that to serial polling with the exception that an MSS summary mes-

sage appears in bit 6 instead of an RQS message.

(3) Definition of MSS (Master Summary Status)
The MSS indicates that the device has at least one cause of issuing a service

request. In the device's response to the ∗ STB? query, the MSS message

appears in bit 6. However, it does not appear in the response to serial polling.

It must not be regarded as part of the IEEE 488.1 defined status byte. The

MSS is the result of ORing the values of status byte register and SRQ enable

(SRE) register bits totally. Specifically, the MSS is defined as follows:

(STB Register bit 0 AND SRE Register bit 0)

OR

(STB Register bit 1 AND SRE Register bit 1)

OR

:

:

(STB Register bit 5 AND SRE Register bit 5)

OR

(STB Register bit 7 AND SRE Register bit 7)

In the definition of the MSS, the values of bits 6 of the status byte register

and SRQ enable register are ignored. Accordingly, when calculating the

MSS value, the status byte may be handled assuming that it is represented by

8 bits and bit 6 is always 0.

Section 8 Status Structure

8-8

(4) Clearing the status byte register using a ∗∗∗∗∗ CLS common com-

mand
The ∗ CLS common command clears all status structures, except the output

queue and MAV summary message (i.e., event registers and queues), and the
corresponding summary messages.

Issuing a ∗ CLS command after the <PROGRAM MESSAGE TERMINA-
TOR> element or before the <Query MESSAGE UNIT> element clears all
status bytes. With this method, all unread messages in the output queue are

cleared and the MAV message becomes False. When replying to the ∗ STB?,
the MSS message becomes False, too. Values of enable registers are not

affected by ∗ CLS.

7

ESB

MAV

3

2

1

0

MSS 6 RQS

Standard event

register

Status summary

message

Status Byte Register

……Output Queue

OPERation

Status register

QUEStionable

Status register

Error/Event

Queue

Not used

SOURce

Status register

Service request

occurrence

D
ata

D
ata

D
ata

D
ata

D
ata

8-9

8.3 Enabling the SRQ

8.3 Enabling the SRQ
Enabling the SRQ allows a summary message in the status byte register to be
selected in response to a service request. The service request enable (SRE) regis-
ter shown below can be used to select a summary message.

Bits of the service request enable register correspond to the bits of the status byte
(STB) register. When 1 is set in a status byte bit corresponding to a significant bit
of the service request enable register, the devices sets the RQS bit to 1 and issues
a service request to the controller. For example, when bit 4 of the service request
enable register is set (enabled) in advance, a service request can be issued to the

controller each time the MAV bit is set to 1 (if the output queue has data).

Logical OR

Service Request

Generation

ESB

MAV

ESB (ERROR)

ESB (END)

Not used

Not used

7

5

4

3

2

1

0

7

5

4

3

2

1

0

&

&

&

&

&

&

&

Status Byte RegisterService Request Enable Register

MSS 6 RQS

disabled=0, enabled=128 (27)

Not used

disabled=0, enabled=32 (25)

disabled=0, enabled=16 (24)

disabled=0, enabled=8 (23)

disabled=0, enabled=4 (22)

disabled=0, enabled=2 (21)

disabled=0, enabled=1 (20) S
ta

tu
s

su
m

m
ar

y
m

es
sa

ge

(1) Reading the service request enable register
service request enable register contents can be read using an ∗ SRE? common
inquiry. The response message to this query is <NR1 NUMERIC RE-
SPONSE DATA>, an integer ranging from 0 to 255. It is a total of values of
the service request enable register. Service request enable register bits 0 to 5
and 7 are assigned weights 1, 2, 4, 8, 16, 32, and 128, respectively. Unused
bit 6 must always be 0.

(2) Updating the service request enable register
The service request enable register is written using an ∗ SRE common com-
mand. The ∗ SRE common instruction is followed by a <DECIMAL NU-
MERIC PROGRAM DATA> element. <DECIMAL NUMERIC PRO-
GRAM DATA> is rounded to an integer. It is represented in binary notation
using a base 2, indicating the total of values of service request enable register
bits (weight value). When the value of this bit is 1, it indicates the enabled
state. When the value of this bit is 0, it indicates the disabled state. The
value of bit 6 must always be ignored.

(3) Clearing the service request enable register
The service request enable register can be cleared by executing an ∗ SRE
common command or turning on the power.
When an ∗ SRE common command is used, the service request enable regis-
ter can be cleared by bringing the <DECIMAL NUMERIC PROGRAM
DATA> element value to 0. Clearing the service request enable register
disables the status information to generate an rsv local message, suppressing
issue of a service request.
When the power is turned on, the service request enable register is cleared if
the Power-ON status clear flag is True and the ∗ PSC command for disabling
clearing of this register is not supported.

Section 8 Status Structure

8-10

8.4 Standard Event Status Register
8.4.1 Definition of Standard Event Status Register Bits

Any device conforming to IEEE 488.2 must have the standard event status regis-

ter. Operation of the standard event register model is shown below, and the

meaning of standard event status register bits given in IEEE 488.2 is explained in

the Table 8-1.

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

ESB summary message bit

(to Status Byte Register bit 5)

Standard Event Status RegisterStandard Event Status Enable Register

Read by ∗ ESR?Set with ∗ ESE <NRf>

Read with ∗ ESE?

disabled=0, enabled=128 (27)

disabled=0, enabled=64 (26)

disabled=0, enabled=32 (25)

disabled=0, enabled=16 (24)

disabled=0, enabled=8 (23)

disabled=0, enabled=4 (22)

disabled=0, enabled=2 (21)

disabled=0, enabled=1 (20)

&

&

&

&

&

&

&

&

Logical OR

Power-ON (PON)

User request (URQ)

Command error (CME)

Execution error (EXE)

Device-dependent error (DDE)

Query error (QYE)

Bus control request (RQC)

Operation complete (OPC)

Table 8-1

Description
The power has been turned ON.

Local control is requested.

This bit is set irrespective of the remote/local state of the device.

Since this bit is not supported by MT9810B, it is always 0.

A program message including a syntax error or a misspelled command

has been received or a GET command has been received in a program

message.

A program message which is syntactically correct but cannot be exe-

cuted has been received.

An error other than CME, EXE, and QYE has occurred.

An attempt was made to read data from the output queue while it has

no data, or the data in the output queue has been lost due to overflow,

etc.

The device is required to be an active controller. Since this bit is not

used by MT9810B, it is always 0.

The device has completed the specified pending operation and ready

for receiving a new instruction.

This bit responds only to the ∗ OPC command and sets the operation

complete bit.

Event name
Power-ON (PON)

User request (URQ)

Command error (CME)

Execution error (EXE)

Device-dependent error (DDE)

Query error (QYE)

Request control (RQC)

Operation complete (OPC)

Bit
7

6

5

4

3

2

1

0

　　

8-11

8.4 Standard Event Status Register

8.4.2 Details on Query Errors

Table 8-2

Description
When a device receives an MTA from the controller before receiving a

program message terminator, it discards the incomplete message

which has been received so far and waits for the next program mes-

sage. To discard the incomplete program message, the device clears

the input/output buffer, reports a query error to the status report part,

and sets the standard status register bit 2 (query error bit).

When a device receives an MLA from the controller before complet-

ing output of a response message terminator, it automatically inter-

rupts output of the response message and waits for a next program

message. To interrupt output of the response message, the device

clears the input/output buffer, reports a query error to the status report

part, and sets the standard status register bit 2 (query error bit).

When the device cannot output a response message because the con-

troller has output a program message (including a query message) and

the next program message in succession, the device discards the

response message and waits for the next program message. A query

error is reported to the status report part like item No. 2.

When a program message containing many query messages is execut-

ed one after another, too many response messages to be stored in the

output queue (256 bytes) may be generated. If more query messages

are input and the response messages to queries must be output, the out-

put queue overflows. When this happens, the device clears the output

queue and resets the response message generation part.

The device also sets the standard event status register bit 2 (query

error bit) in the status report part.

Item

Incomplete program message

Interruption of response mes-

sage output

When the next program mes-

sage is sent without reading a

response message

Output queue overflow

No.

1

2

3

4

Section 8 Status Structure

8-12

8.4.3 Reading, Writing, and Clearing the Standard Event Status Register

Table 8-3

Read

Write

Clearing

This register is read destructively in response to the ∗ ESR? common command. In other words,

this register is cleared after being read. The event bit assigned binary weights and converted to a

decimal value <NR1> is the response message.

This register cannot be written externally; however, it can be cleared.

This register is cleared in the following cases:

(1) A ∗ CLS command is received.

(2) The power is turned on if the Power-ON status clear flag is True.

The device executing a Power-ON sequence first clears the standard event status register, then

records the events that have occurred in this sequence (e.g., PON event bit setting).

(3) An event is read in response to an ∗ ESR? query command.

8.4.4 Reading, Writing, and Clearing the Standard Event Status Enable

Register

Table 8-4

�
Read�
�
�

Write�
�
�
�
�

Clearing

This register is read non-destructively in response to the ∗ ESR? common command. In other

words, this register is not cleared after being read. The response message is assigned binary

weights, converted from a binary value to a decimal value <NR1>, and returned.

This register is written using an ∗ ESS common command. Register bits 0 to 8 are assigned weights

1, 2, 4, 8, 16, 32, 64, and 128 respectively, so a total of values of the desired write data bits is sent

as <DECIMAL NUMERIC PROGRAM DATA>.

This register is cleared in the following cases:

(1) An ∗ ESE command with its data value being 0 is received.

(2) The power is turned on with the Power-ON status clear flag in the True state or the power is

turned on when a ∗ PSC command is not supported.

The standard event status register is not affected by the following:

(1) Change in the state of the IEEE 488.1-defined device clear function

(2) Reception of an ∗ RST common command

(3) Reception of a ∗ CLS common command

8-13

8.5 Queue Model
The right-hand side of the figure below shows a queue model having a status data

structure. A queue is a data structure in which data is arranged sequentially,

providing information such as sequential status. A summary message indicates

that such information exists in the queue. Queue contents are read by an hand-

shake when the device is in TACS (talker active state).

7

ESB

MAV

3

2

1

0

MSS 6 RQS

Status Byte Register

⋅
⋅
⋅
⋅

Data

Data

Data

Data

Data

Data

Output Queue

⋅
⋅
⋅
⋅

Data

Data

Data

Data

Data

Data

Queue

MAV (message available)
summary bit

MAV (Message Available) summary bit

indicating the output queue is not empt

The queue that outputs an MAV summary bit to status byte register bit 4 is called

an "output queue." This queue is mandatory. The queue that can output an MAV

summary message to one of status byte register bits 0 to 3 and 7 is simply called a

"queue." It is optional. A summary message from the register model can also be

output to status byte register bits 0 to 3 and 7, so the summary message type

depends on the device type.

Refer to the Table 8-5 for a comparison of the output queue to general queues.

8.5 Queue Model

Section 8 Status Structure

8-14

Table 8-5 Comparison of Output Queue to General Queues

Item Output queue Queue

Data input/output type�
�

Read�
�
�
�
�

Write�
�
�
�
�
�

Summary message�
�
�
�
�
�

Clearing

FIFO type�
Response message units are read using only
an IEEE 488.2 message exchange protocol.
The type of these response message units
depends on the query type.�
Program message elements are not written
directly.�
This queue communicates with the system
interface using only an IEEE 488.2 message
exchange protocol.�
When the output queue is not empty, the sum-
mary message bit becomes True (1).�
When it is empty, the summary message bit
becomes False (0).�
The MAV summary message is used to syn-
chronize information exchange between a
device and the controller.�
This queue is cleared in the following cases:�
(a) All items in the queue are read.�
(b) A DCL bus command is received for mes-
sage exchange.�

(c) The PON bit becomes True at Power-ON.�
(d) Operation is unterminated or interrupted.

Not necessary to be FIFO type�
Response message units are read with
device-dependent query commands.
These response message units must be of
the same type.�
�
Program message elements are not writ-
ten directly.�
Coded device information is indicated.�
�
�

When the queue is not empty, the
summary message bit becomes True (1).
When it is empty, the summary message
bit becomes False (0).

�
�
�

This queue is cleared in the following
cases:�
(a) All items in the queue are read.�
(b) A ∗ CLS command is received.�
(c) Other device-dependent means

�

8-15

8.6 Extended Status Bytes
In the SCPI standard, bit 7 in the status byte is used as "OPERation Status" and bit

3 is used as "QUEStionable Status". Bit 2 is allocated to "Error/Event Queue."

Each status register has the following configuration. Assign bit 0 for a status

summary bit of "SOURce Status" as the unit-specific message.

(1) CONDITION REGISTER

The condition register remains unchanged even after reading from the exter-

nal device (controller). It cannot be set by any of the commands from the

external device (controller) and can be set only by the state change in the

measuring instrument.

(2) TRANSITION FILTER

The transition filter is used to determine whether to report the state change

reported to the condition register to the event status register.

The filter for change from 0 to 1 is called the P-transition filter, while the

filter for change from 1 to 0 is called the N-transition filter. These filters are

rewritten as a mask pattern in accordance with the request from the external

device (controller) (set/clear for each bit). These mask patterns remain un-

changed even after the reading from the controller.

(3) EVENT REGISTER

The event register can be set indirectly through the condition register or the

P/N-transition filter from the inside of the measuring instrument. The event

resister cannot be directly accessed from an application program.

(4) EVENT ENABLE REGISTER

An event enable register for the event register.

(5) ERROR/EVENT QUEUE

While a message is stored in this queue, the corresponding bit in the status

byte register is set. If a message goes out of the message queue, the corre-

sponding bit in the status byte register is cleared.

8.6 Extended Status Bytes

Section 8 Status Structure

8-16

8.6.1 Status register

STATus:PRESet

(1) Function

Initialization of the enable register and transition filter

(2) Program message

STATus:PRESet

(3) Explanation

This command initializes the enable register and transition filter. Each regis-

ter is set as shown in the Table 8-6.

Table 8-6

Register Filter/Enable Preset Value

Operation

Questionable

Enable

PTR

NTR

Enable

PTR

NTR

all 0

all 1

all 0

all 0

all 1

all 0

<node>:CONDition

(1) Function

Checking of the condition register

(2) Program message

<node>:CONDition?

(3) Response message

<code>

(4) Parameter

<code>:= {n|0 ≤ n ≤ 32767}

(5) Explanation

This command returns the sum total of the values of the condition register.

The item of the condition register to be specified is determined with <node>.

8-17

<node>:ENABle

(1) Function

Setting of the event enable register

(2) Program message

<node>:ENABle <mask>

<node>:ENABle?

(3) Response message

<mask>

(4) Parameter

<mask>:= {n|0 ≤ n ≤ 32767}

(5) Explanation

This command finds the sum total of the bit digit values when the bit to be

enabled in the event enable register becomes the parameter. The bit digit

value to be disabled is zero. The item of the event enable register to be

specified is determined with <node>.

<node>[:EVENt]

(1) Function

Checking of the event register

(2) Program message

<node>[:EVENt]?

(3) Response message

<code>

(4) Parameter

<code>:= {n|0 ≤ n ≤ 32767}

(5) Explanation

This command returns the sum total of the values of the event register. The

item of the event register to be specified is determined with <node>.

8.6 Extended Status Bytes

Section 8 Status Structure

8-18

<node>:NTRansition

(1) Function

Setting of the N-transition register

(2) Program message

<node>:NTRansition <mask>

<node>:NTRansition?

(3) Response message

<mask>

(4) Parameter

<mask>:= {n|0 ≤ n ≤ 32767}

(5) Explanation

This command finds the sum total of the bit digit values when the bit to be

enabled in the N-transition register becomes the parameter. The bit digit

value to be disabled is zero. The item of the N-transition register to be speci-

fied is determined with <node>.

<node>:PTRansition

(1) Function

Setting of the P-transition register

(2) Program message

<node>:PTRansition <mask>

<node>:PTRansition?

(3) Response message

<mask>

(4) Parameter

<mask>:= {n|0 ≤ n ≤ 32767}

(5) Explanation

This command finds the sum total of the bit digit values when the bit to be

enabled in the P-transition register becomes the parameter. The bit digit

value to be disabled is zero. The item of the P-transition register to be speci-

fied is determined with <node>.

8-19

8.6 Extended Status Bytes

8.6.2 Operation Status Register

The operation status register indicates the state of the equipment.

The commands are shown below. Insert these commands into the <node> portion

in the status register.

Command Description

STATus:OPERation Operation status register

STATus:OPERation:SETTling State of temperature of light source unit

STATus:OPERation:MEASuring Measuring condition of optical sensor unit

STATus:OPERation:CORRection State of zero-set operation of optical sensor unit

STATus:OPERation:AVERage State of averaging operation of optical sensor unit

STATus:OPERation

(1) Function

Indication of the operation status register reference

(2) Explanation

This command makes the references of the operation status register.

The state of the equipment is indicated by allocating to bits. Each bit indi-

cates the following.

Bit Description

1 State of temperature of light source unit

4 Measuring condition of optical sensor unit

7 State of zero-set operation of optical sensor unit

8 State of averaging operation of optical sensor unit

Section 8 Status Structure

8-20

STATus:OPERation:SETTling

(1) Function

Indication of the state of temperature of light source unit

(2) Explanation

This command indicates the state of the temperature of the light source unit

and indicates whether it can be used.

The bits correspond one for one with the channels in order with bit 0 as

Channel 1. Depending on the state, whether the light source unit can be used

is indicated.

Bit Corresponding channel

0 Channel 1

1 Channel 2

State Description

0 The light source unit cannot be used

1 The light source unit can be used

STATus:OPERation:MEASuring

(1) Function

Indication of the measuring condition of optical sensor unit

(2) Explanation

This command indicates the measuring condition of the optical sensor unit.

The bits correspond one for one with the channels in order with bit 0 as

Channel 1. Depending on the state, whether the optical sensor unit is in

measurement is indicated.

Bit Corresponding channel

0 Channel 1

1 Channel 2

State Description

0 The optical sensor unit is not measuring

1 The optical sensor unit is measuring

8-21

8.6 Extended Status Bytes

STATus:OPERation:CORRecting

(1) Function

Indication of the state of zero-set operation of optical sensor unit

(2) Explanation

This command indicates the state of zero-set operation of the optical sensor

unit.

The bits correspond one for one with the channels in order with bit 0 as

Channel 1. Depending on the state, whether the optical sensor unit is in zero-

set is indicated.

Bit Corresponding channel

0 Channel 1

1 Channel 2

State Description

0 Zero-set is not being performed.

1 Zero-set is being performed.

STATus:OPERation:AVERaging

(1) Function

Indication of the state of averaging operation of optical sensor unit

(2) Explanation

This command indicates the state of averaging operation of the optical sen-

sor unit.

The bits correspond one for one with the channels in order with bit 0 as

Channel 1. Depending on the state, whether the optical sensor unit is in

averaging operation is indicated.

Bit Corresponding channel

0 Channel 1

1 Channel 2

State Description

0 Averaging operation is not being performed.

1 Averaging operation is being performed.

Section 8 Status Structure

8-22

8.6.3 QUESTIONABLE Status Register

The commands of the QUESTIONABLE status register are shown below. Insert
these commands into the <node> portion in the status register.

Command Description

STATus:QUEStionable: POWer QUESTIONABLE status register

STATus:QUEStionable: POWer:OVERRange Over range of optical sensor unit
STATus:QUEStionable: POWer:UNDerrange Under range of optical sensor unit
STATus:QUEStionable: POWer:CURRent Current abnormality
STATus:QUEStionable: POWer:ENVTemp Temperature abnormality

STATus:QUEStionable: POWer:POWer Power supply abnormality

STATus:QUEStionable:POWer

(1) Function
Indication of the QUESTIONABLE status register reference

(2) Explanation
This command makes the references of the QUESTIONABLE status regis-
ter.
The state of the device is indicated by allocating to bits. Each bit indicates

the following.

Bit Description

0 Over range of optical sensor unit
1 Under range of optical sensor unit

2 Remote interlock
6 Current abnormality
7 Temperature abnormality
8 Power supply abnormality

STATus:QUEStionable:POWer:OVERRange

(1) Function
Indication of the over range of optical sensor unit

(2) Explanation
This command indicates the over range of the optical sensor unit.

The bits correspond one for one with the channels in order with bit 0 as
Channel 1. Depending on the state, whether the optical sensor unit is in over
range is indicated.

Bit Corresponding channel

0 Channel 1
1 Channel 2

State Description

0 The optical sensor unit is not over range

1 The optical sensor unit is over range

8-23

8.6 Extended Status Bytes

STATus:QUEStionable:POWer:UNDerrange

(1) Function

Indication of the under range of optical sensor unit

(2) Explanation

This command indicates the under range of the optical sensor unit.

The bits correspond one for one with the channels in order with bit 0 as

Channel 1. Depending on the state, whether the optical sensor unit is in

under range is indicated.

Bit Corresponding channel

0 Channel 1

1 Channel 2

State Description

0 The optical sensor unit is not under range

1 The optical sensor unit is under range

STATus:QUEStionable:POWer:CURRent

(1) Function

Indication of the current abnormality

(2) Explanation

This command indicates the occurrence of current abnormality.

The bits correspond one for one with the channels in order with bit 0 as

Channel 1. Depending on the state, whether current abnormality is occurring

is indicated.

Bit Corresponding channel

0 Channel 1

1 Channel 2

State Description

0 Current abnormality is not occurring.

1 Current abnormality is occurring.

Section 8 Status Structure

8-24

STATus:QUEStionable:POWer:ENVTemp

(1) Function

Indication of the temperature abnormality

(2) Explanation

This command indicates the occurrence of temperature abnormality.

The bits correspond one for one with the channels in order with bit 0 as

Channel 1. Depending on the state, whether temperature abnormality is oc-

curring is indicated.

Bit Corresponding channel

0 Channel 1

1 Channel 2

State Description

0 Temperature abnormality is not occurring.

1 Temperature abnormality is occurring.

STATus:QUEStionable:POWer:POWer

(1) Function

Indication of the power supply abnormality

(2) Explanation

This command indicates the occurrence of power supply abnormality.

The bits correspond one for one with the channels in order with bit 0 as

Channel 1. Depending on the state, whether power supply abnormality is

occurring is indicated.

Bit Corresponding channel

0 Channel 1

1 Channel 2

State Description

0 Power supply abnormality is not occurring.

1 Power supply abnormality is occurring.

8-25

8.6 Extended Status Bytes

8.6.4 SOURCE status register

SOURCE status register indicates the optical output status of the optical source

unit. Commands are listed up as follows. Use these commands by inputting them

into the <node> part of status register.

Command Description

STATus:SOURce: SOURCE status register

STATus:SOURce:SOLT Optical output status of output source unit

STATus:SOURce:

(1) Function

SOURCE status register

(2) Explanation

Refers to the SOURCE status register.

Indicate the device status by allocating to the bits. The contents of each bit

are listed below.

Bit Description

0 Optical output status of the optical source unit

STATus:SOURce:SOLT

(1) Function

Optical output status of the optical source unit

(2) Explanation

Indicates the measurement status of the optical source unit.

Each bit corresponds to the channel in order by setting bit 0 to channel 1, and

indicates the optical output status of the optical source unit according to the

bit status.

Bit Corresponding channel

0 Channel 1

1 Channel 2

State Corresponding channel

0 Optical output OFF status

1 Optical output ON status

Section 8 Status Structure

8-26.

9-1

9.1 Main Frame .. 9-2

9.1.1 DISPlay:BRIGhtness 9-2

9.1.2 DISPlay[:STATe] 9-2

9.1.3 SYSTem:BEEPer:STATe 9-3

9.1.4 SYSTem:CHANnel:STATe 9-4

9.1.5 SYSTem:COMMunicate:

GPIB:HEAD 9-4

9.1.6 SYSTem:COMMunicate:SERial:

HEAD 9-5

9.1.7 SYSTem:DATE 9-5

9.1.8 SYSTem:ERRor...................... 9-6

9.1.9 SYSTem:TIME 9-6

9.2 Optical Sensor 9-7

9.2.1 ABORt[1|2] 9-7

9.2.2 FETCh[1|2][:SCALar]:

POWer[:DC] 9-7

9.2.3 SENSe[1|2]:AVERage:COUNt ... 9-8

9.2.4 SENSe[1|2]:BANDwidth 9-8

9.2.5 SENSe[1|2]:BANDwidth:AUTO .. 9-9

9.2.6 SENSe[1|2]:CORRection:

COLLect:ZERO....................... 9-9

9.2.7 SENSe[1|2]:CORRection

[:LOSS[:INPut[:MAGNitude]]] ... 9-10

9.2.8 SENSe[1|2]:FETCh[:SCALar]:

POWer[:DC]:MAXimum 9-10

9.2.9 SENSe[1|2]:FETCh[:SCALar]:

POWer[:DC]:MINimum 9-11

9.2.10 SENSe[1|2]:FETCh[:SCALar]:

POWer[:DC]:PTPeak 9-11

9.2.11 SENSe[1|2]:FILTer:BPASs:

FREQuency 9-12

9.2.12 SENSe[1|2]:INITiate

[:IMMediate] 9-12

9.2.13 SENSe[1|2]:MEMory:COPY

[:NAME] 9-13

9.2.14 SENSe[1|2]:MEMory:DATa 9-13

9.2.15 SENSe[1|2]:MEMory:DATa:

INFO 9-14

9.2.16 SENSe[1|2]:POWer:INTerval ... 9-15

9.2.17 SENSe[1|2]:POWer:RANGe:

AUTO 9-15

9.2.18 SENSe[1|2]:POWer:RANGe

[:UPPer] 9-16

9.2.19 SENSe[1|2]:POWer:

REFerence.............................. 9-16

9.2.20 SENSe[1|2]:POWer:REFerence:

DISPlay 9-17

9.2.21 SENSe[1|2]:POWer:REFerence:

STATe..................................... 9-18

9.2.22 SENSe[1|2]:POWer:REFerence:

STATe:RATio.......................... 9-18

9.2.23 SENSe[1|2]:POWer:UNIT 9-19

9.2.24 SENSe[1|2]:POWer:

WAVelength 9-20

9.2.25 SENSe[1|2]:POWer:WAVelength:

UNIT 9-20

9.2.26 SENSe[1|2]:TRIGger:COUNt ... 9-21

9.2.27 SENSe[1|2]:TRIGger[:SEQuence]

[:IMMediate] 9-21

9.2.28 READ[1|2] 9-22

9.2.29 READ[1|2]:ABORt 9-22

9.3 Light Source 9-23

9.3.1 SOURce[1|2]:AM[:INTerval]:

FREQuency 9-23

9.3.2 SOURce[1|2]:MEMory:COPY

[:NAME] 9-23

9.3.3 SOURce[1|2]:POWer:

ATTenuation 9-24

9.3.4 SOURce[1|2]:POWer:STATe ... 9-24

9.3.5 SOURce[1|2]:POWer:

WAVelength 9-25

9.3.6 SOURce[1|2]:POWer:

WAVelength:UNIT 9-25

9.4 Error Messages 9-26

Section 9 Details on Device Messages

Section 9 Details on Device Messages

9-2

9.1 Main Frame
9.1.1 DISPlay:BRIGhtness

(1) Function

Brightness setting

(2) Program message

DISPlay:BRIGhtness <ratio>

DISPlay:BRIGhtness?

(3) Response message

DISPLAY:BRIGHTNESS <ratio>

(4) Parameter

<ratio>:= {f|0.1 ≤ f ≤ 1.0}

(5) Explanation

This command sets the brightness on the display.

When <ratio> is set to 0.1, the brightness is the lowest; when it is set to 1, the

brightness is the highest.

The brightness can be set in ten steps.

0.1 ← <ratio> → 1

Dark Bright

9.1.2 DISPlay[:STATe]

(1) Function

Turns ON/OFF the display

(2) Program message

DISPlay[:STATe] <sw>

DISPlay[:STATe]?

(3) Response message

DISPLAY <status>

(4) Parameter

<sw>:= {ON,OFF,1,0}

<status>:= {1,0}

1 ON

0 OFF

(5) Explanation

This command switches the display/non-display of the display.

9-3

9.1.3 SYSTem:BEEPer:STATe

(1) Function

Buzzer setting

(2) Program message

SYSTem:BEEPer:STATe <level>

SYSTem:BEEPer:STATe?

(3) Response message

SYSTEM:BEEPER:STATE <level>

(4) Parameter

<level>:= {0,1,2,3,4}

(5) Explanation

This command sets the level of the buzzer sound.

The buzzer sound is set as shown below depending on <level>.

<level> Meaning

0 Buzzer OFF

1 Small Level

2

3

4 Large Level

9.1 Main Frame

Section 9 Details on Device Messages

9-4

9.1.4 SYSTem:CHANnel:STATe
(1) Function

Inquires the inserted unit

(2) Program message
SYSTem:CHANnel:STATe?

(3) Response message
SYSTEM:CHANNEL:STATE <uid> (@ <uno>){,<uid> (@ <uno>)}

(4) Parameter
<uid>:= {OPM,OLS}

<uno>:= {1,2}

(5) Explanation
This command outputs the types and ID numbers for all units inserted cur-
rently. If no unit is inserted, "NOUNIT" is returned as response data.
The unit type is indicated with <uid> and it is interrupted as shown below.

<uid> Unit name

OPM Optical sensor unit
OLS Light source unit

9.1.5 SYSTem:COMMunicate:GPIB:HEAD
(1) Function

Specifies whether to attach a header

(2) Program message
SYSTem:COMMunicate:GPIB:HEAD <flag>

SYSTem:COMMunicate:GPIB:HEAD?

(3) Response message
SYSTEM:COMMUNICATE:GPIB:HEAD <status>

(4) Parameter
<flag>:= {ON,OFF,1,0}

<status>:= {1,0}

1 ON

0 OFF

(5) Explanation
This command specifies whether to attach a header to the response message
By default, no header is attached.
The same setting item exists in both GPIB and serial (SYSTem

:COMMunicate:GPIB:HEAD and SYSTem:COMMunicate:SERial
:HEAD). These are not independent of each other. Therefore, if one item is
set, the other is set to the same condition.

9-5

9.1.6 SYSTem:COMMunicate:SERial:HEAD

(1) Function

Specifies whether to attach a header

(2) Program message

SYSTem:COMMunicate:SERial:HEAD <flag>

SYSTem:COMMunicate:SERial:HEAD?

(3) Response message

SYSTEM:COMMUNICATE:SERIAL:HEAD <status>

(4) Parameter

<flag>:= {ON,OFF,1,0}

<status>:= {1,0}

1 ON

0 OFF

(5) Explanation

This command specifies whether to attach a header to the response message.

Default does not attach a header.

The same setting item exists in both GPIB and serial (SYSTem

:COMMunicate:GPIB:HEAD and SYSTem:COMMunicate:SERial

:HEAD). These items are not independent of each other. Therefore, if one

item is set, the other is set to the same condition.

9.1.7 SYSTem:DATE

(1) Function

Sets the calendar

(2) Program message

SYSTem:DATE <year>,<month>,<day>

SYSTem:DATE?

(3) Response message

SYSTEM:DATE <year>,<month>,<day>

(4) Parameter

<year>:= {n|1990 ≤ n ≤ 2089}
<month>:= {n|1 ≤ n ≤ 12}
<day>:= {n|1 ≤ n ≤ 31}

(5) Explanation

This command sets the calendar of the system.

<year>, <month>, and <day> indicate year, month, and day, respectively.

9.1 Main Frame

Section 9 Details on Device Messages

9-6

9.1.8 SYSTem:ERRor

(1) Function

Inquires the error value

(2) Program message

SYSTem:ERRor?

(3) Response message

SYSTEM:ERROR <code>

(4) Explanation

As a response to SYSTem:ERRor, SCPI specifies the codes and messages

corresponding to the errors. The error messages supported by this product

are described in the Section 9.4 "Error Message."

9.1.9 SYSTem:TIME

(1) Function

Sets the time

(2) Program message

SYSTem:TIME <hour>,<minute>,<second>

SYSTem:TIME?

(3) Response message

SYSTEM:TIME <hour>,<minute>,<second>

(4) Parameter

<hour>:= {n|0 ≤ n ≤ 23}
<minute>:= {n|0 ≤ n ≤ 59}
<second>:= {n|0 ≤ n ≤ 59}

(5) Explanation

This command sets the clock of the system to the specified time.

The time is specified in 24-hour unit. <hour>, <minute>, and <second> indi-

cate hour, minute, and second, respectively.

9-7

9.2 Optical Sensor

9.2 Optical Sensor
[1|2] indicates the channel number into which the optical sensor to be controlled

is inserted. If the optical sensor is inserted into Channel 1, it can be omitted. The

brackets ([]) are not required.

Example: ABORT1 FETCH2:SCALAR:POWER:DC SENSE:CORRECTION

:COLLECT:ZERO etc.

9.2.1 ABORt[1|2]

(1) Function

Stops measurement

(2) Program message

ABORt[1|2]

(3) Explanation

This command stops the logging.

9.2.2 FETCh[1|2][:SCALar]:POWer[:DC]

(1) Function

Inquires the measurement data

(2) Program message

FETCh[1|2][:SCALar]:POWer[:DC]?

(3) Response message

FETCH1|2 <level>

(4) Parameter

<level>:= <NR3>

(5) Explanation

This command returns the current measurement data.

The unit of the measurement data may be dBm, W, or dB in accordance with

the current unit.

Section 9 Details on Device Messages

9-8

9.2.3 SENSe[1|2]:AVERage:COUNt

(1) Function

Sets the number of times of averaging

(2) Program message

SENSe[1|2]:AVERage:COUNt <count>

SENSe[1|2]:AVERage:COUNt?

(3) Response message

SENSE1|2:AVERAGE:COUNT <count>

(4) Parameter

<count>:= {1,2,5,10,20,50,100,200,500,1000}

(5) Explanation

This command sets the number of times of averaging in the averaging opera-

tion.

9.2.4 SENSe[1|2]:BANDwidth

(1) Function

Sets the bandwidth

(2) Program message

SENSe[1|2]:BANDwidth <bw> [<unit>]

SENSe[1|2]:BANDwidth?

(3) Response message

SENSE1|2:BANDWIDTH <bw>

(4) Parameter

<bw>:= {0.1,1,10,100,1000,10000,20000,100000} (Unit: Hz)

<unit>:= {HZ,KHZ}

(5) Explanation

This command sets the bandwidth to the value set in <bw>.

Some values cannot be set for <bw>depending on the unit.

In the program message, supplementary units may be used.

In the response message, the value is always output in Hz.

9-9

9.2 Optical Sensor

9.2.5 SENSe[1|2]:BANDwidth:AUTO

(1) Function

Sets the auto bandwidth

(2) Program message

SENSe[1|2]:BANDwidth:AUTO <sw>

SENSe[1|2]:BANDwidth:AUTO?

(3) Response message

SENSE1|2:BANDWIDTH:AUTO <status>

(4) Parameter

<sw>:= {ON,OFF,1,0}

<status>:= {1,0}

1 ON

0 OFF

(5) Explanation

This command sets the bandwidth setting to auto.

9.2.6 SENSe[1|2]:CORRection:COLLect:ZERO

(1) Function

Executes zero-set

(2) Program message

SENSe[1|2]:CORRection:COLLect:ZERO

SENSe[1|2]:CORRection:COLLect:ZERO?

(3) Response message

SENSE1|2:CORRECTION:COLLECT <result>

(4) Parameter

<result>:= <NR1>

(5) Explanation

This command executes zero-set.

The response message has the following value.

For the error code, refer to the Section 9.4 "Error Message."

<result> State

0 Normal end

1 Zero-set from remote is not executed.

2 Zero-set is being executed.

Negative numberError

Section 9 Details on Device Messages

9-10

9.2.7 SENSe[1|2]:CORRection[:LOSS[:INPut[:MAGNitude]]]

(1) Function

Sets the calibration factor

(2) Program message

SENSe[1|2]:CORRection[:LOSS[:INPut[:MAGNitude]]]

<cal>[DB]

SENSe[1|2]:CORRection[:LOSS[:INPut[:MAGNitude]]]?

(3) Response message

SENSE1|2:CORRECTION:LOSS:INPUT:MAGNITUDE <cal>

(4) Parameter

<cal>:= {f| –199.99 ≤ n ≤ 199.99}

(5) Explanation

This command sets the calibration factor to <cal>.

<cal> is always accepted in dB. The unit may be omitted.

9.2.8 SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:MAXimum

(1) Function

Reads the maximum value

(2) Program message

SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:MAXimum?

(3) Response message

SENSE1|2:FETCH:SCALAR:POWER:DC:MAXIMUM <level>

(4) Parameter

<level>:= <NR3>

(5) Explanation

This command outputs the maximum value of the measured data during the

period from the start of statistical measurement up to now.

The unit of the measurement data is dBm or W in accordance with the

present measurement value.

9-11

9.2 Optical Sensor

9.2.9 SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:MINimum

(1) Function

Reads the minimum value

(2) Program message

SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:MINimum?

(3) Response message

SENSE1|2:FETCH:SCALAR:POWER:DC:MINIMUM <level>

(4) Parameter

<level>:= <NR3>

(5) Explanation

This command outputs the minimum value of the measurement data during

the period from the start of statistical measurement up to now.

The unit of the measured data is dBm or W in accordance with the present

measured value.

9.2.10 SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:PTPeak

(1) Function

Reads the difference between the maximum and minimum values

(2) Program message

SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:PTPeak?

(3) Response message

SENSE1|2:FETCH:SCALAR:POWER:DC:PTPEAK <level>

(4) Parameter

<level>:= <NR3>

(5) Explanation

This command outputs the difference between the maximum and minimum

values of the measurement data during the period from the start of statistical

measurement up to now.

The unit of the measurement data is dB.

Section 9 Details on Device Messages

9-12

9.2.11 SENSe[1|2]:FILTer:BPASs:FREQuency

(1) Function

Sets the modulation frequency

(2) Program message

SENSe[1|2]:FILTer:BPASs:FREQuency CW|<freq>[<unit>]

SENSe[1|2]:FILTer:BPASs:FREQuency?

(3) Response message

SENSE1|2:FILTER:BPASS:FREQUENCY <freq>

(4) Parameter

<freq>:= {0,270,1000,2000} (Unit: Hz)

<unit>:= {HZ,KHZ}

(5) Explanation

This command sets the modulation frequency to be measured.

If the unit of <freq> is omitted, Hz is assumed. If the unit is specified in

<unit>, set in the unit.

For 0 Hz, CW is set.

The response message is always output in Hz.

9.2.12 SENSe[1|2]:INITiate[:IMMediate]

(1) Function

Starts the logging

(2) Program message

SENSe[1|2]:INITiate[:IMMediate]

(3) Explanation

This command makes the measurements by the number of times specified.

The number of times is set in "SENSe:TRIGger:COUNt."

9-13

9.2.13 SENSe[1|2]:MEMory:COPY[:NAME]
(1) Function

Stores/Reads the measurement conditions

(2) Program message
SENSe[1|2]:MEMory:COPY[:NAME] MC,<no>|<no>,MC

(3) Parameter
<no>:= {0,1,2,3,4,5,6,7,8,9}

(4) Explanation
This command stores or reads the measurement conditions using the memory

number specified with <no>.

"MC, <no>" stores the measurement condition and "<no>, MC" reads the mea-

surement condition.

If "0" is specified for <no>, only reading is effective because it is the initial

condition setting.

9.2.14 SENSe[1|2]:MEMory:DATa
(1) Function

Reads the logging data

(2) Program message
SENSe[1|2]:MEMory:DATa? MD[,<start>[,<number>]]

(3) Response message
SENSE1|2:MEMORY:DATA <number>{,<level>}∗

(4) Explanation
This command reads the logging data.

<start> and <number> indicate the starting point of reading and the number of

data items to be read, respectively. If these are omitted, operation is started

with <start> as 1 and <number> as the number of data items measured.

For <start>, a value larger than the number of data items measured cannot be

specified. For <number>, the number of data items measured or a number

larger than the number of data items measured after <start> may be specified.

However, the number of data items that can be taken out is the effective number

of data items.

For the response message, the number of data items actually taken out and the

measurement data of these data items are output. Though the measurement

data does not have a unit, it is the unit used when it is recorded (dBm or W).

This unit can be known from "SENSe:MEMory:DATa:INFO." If the unit is

W, the exponential notation is used instead of the supplementary unit.

If no measurement data exists, the response message only with <number> as

"0" is output.

9.2 Optical Sensor

Section 9 Details on Device Messages

9-14

9.2.15 SENSe[1|2]:MEMory:DATa:INFO

(1) Function

Logging data information

(2) Program message

SENSe[1|2]:MEMory:DATa:INFO?

(3) Response message

SENSE1|2:MEMORY:DATA:INFO V1.0,"<info>"

(4) Explanation

This command reads the detailed information of the logging data.

"V1.0" at the head of the response message is used to identify the succeeding

information. At present, only "V1.0" used.

In <info>, the following information are listed and separated by a semi-colon

(;).

Information Description

unit model name the model name of the unit measured

measurement date/time the date and time of measurement are described as shown below:

 YY/MM/DD, hh:mm:ss

averaging count the number of times of averaging made at the time of measure-

ment

interval time measurement interval used at the time of measurement

measurement data count the number of data items measured

data unit "DBM" or "W"

statistical data a list of the maximum value, minimum value, peak-to-peak

value, and average value separated by a comma (,).

Thought the units of these values are omitted, these are output in the values

in accordance with the units of the data. If the data unit is "DBM," the maxi-

mum value, minimum value, and average value are output in dBm and the

peak-to-peak value is output in W. If the data unit is "W," the maximum

value, minimum value, and average value are output in W and the peak-to-

peak value is output in %.

When the data unit is "W," the watt value described in the exponential nota-

tion instead of the supplementary unit.

If no measurement data exists, the response message is output with <info> as

a blank.

SENSE1:MEMORY:DATA:INFO V1.0,""

9-15

9.2.16 SENSe[1|2]:POWer:INTerval

(1) Function

Sets the measurement interval

(2) Program message

SENSe[1|2]:POWer:INTerval <time>

SENSe[1|2]:POWer:INTerval?

(3) Response message

SENSE1|2:POWER:INTERVAL <time>

(4) Parameter

<time>:= {f|0.001 ≤ f ≤ 359999}

(5) Explanation

This command sets the measurement interval.

The parameter <time> is set in seconds and rounded off to the resolution.

9.2.17 SENSe[1|2]:POWer:RANGe:AUTO

(1) Function

Sets the auto range

(2) Program message

SENSe[1|2]:POWer:RANGe:AUTO <sw>

SENSe[1|2]:POWer:RANGe:AUTO?

(3) Response message

SENSE1|2:POWER:RANGE:AUTO <status>

(4) Parameter

<sw>:= {ON,OFF,1,0}

<status>:= 1,0

1 ON

0 OFF

(5) Explanation

This command specifies whether to set the measurement range to auto.

If "ON" or "1" is set, automatic setting is valid.

If "OFF" or "0" is set, automatic setting is invalid.

9.2 Optical Sensor

Section 9 Details on Device Messages

9-16

9.2.18 SENSe[1|2]:POWer:RANGe[:UPPer]

(1) Function

Sets the manual range.

(2) Program message

SENSe[1|2]:POWer:RANGe[:UPPer] <levle>[DBM]

SENSe[1|2]:POWer:RANGe[:UPPer]?

(3) Response message

SENSE1|2:POWER:RANGE:UPPER <level>

(4) Parameter

<level>:= {40,30,20,10,0,–10,–20,–30,–40,–50,–60,

–70,–80,–90,–100,–110}

(5) Explanation

This command makes measurement with the measurement range fixed to

<level>.

Since <level> is dependent on the unit, some values may not be set in some

units.

For the unit, only "DBM" is accepted. The unit can be omitted.

9.2.19 SENSe[1|2]:POWer:REFerence

(1) Function

Sets the reference value.

(2) Program message

SENSe[1|2]:POWer:REFerence <type>,<level>[<unit>]

SENSe[1|2]:POWer:REFerence? <type>

(3) Response message

SENSE1|2:POWER:REFERENCE <level>

(4) Parameter

<type>:= {TOA,TOB,TOREF,0,1,2}

When "TOREF" or "2":

<level>:= {f(W)|1 × 10–16 ≤ f ≤ 99.999}
<level>:= {f(dBm)| –199.999 ≤ f ≤ +199.999}
<unit>:= {PW,NW,UW,MW,W,DBM}

When "TOA" or "0," and "TOB" or "1"

<level>:= {f(dB)| –199.999 ≤ f ≤ 199.999}
<unit>:= {DB}

9-17

(5) Explanation

This command sets the reference value at the reference measurement time.

"TOREF" sets the specified level value as the reference value of the channel.

It can be used in both SENSe1 and SENSe2.

The reference value can be set in W or dBm. If the unit is omitted, dBm is

assumed. If the unit is specified as "W," the values from 0.0001 pW to

99.999 W can be set; if the unit is specified as "DBM," the values from –

199.999 dBm to +199.999 dBm can be set.

"TOA" and "TOB" are effective only when two optical sensor units are in-

serted, and the reference value for the difference in levels between two chan-

nels is set. In this case difference in level – standard value is displayed.

(Where, standard value = reference value + relative value)

The reference value can be set only in dB. Therefore, when adding a unit,

only "DB" is effective. "TOA" and "TOB" are effective only for "SENSe2"

and "SENSe1," respectively.

When "TOA" or "TOB" is specified, the response message is always re-

turned in dB.

When "TOREF" is specified, the response message is returned in W or dBm

in accordance with the current unit.

9.2.20 SENSe[1|2]:POWer:REFerence:DISPlay

(1) Function

Displays the relative value.

(2) Program message

SENSe[1|2]:POWer:REFerence:DISPlay

(3) Explanation

Relative values that make the display value set to 0 dB is set and values are

displayed in relative value display.

Since this command displays relative measurements with the current display

value as 0 dB, it can be set even in the absolute value display and reference

value display. The display value can be obtained by the following expres-

sion.

display value = measurement value – reference value – relative value

If the absolute value display is changed to the relative value display, the

reference value is treated as 0.

9.2 Optical Sensor

Section 9 Details on Device Messages

9-18

9.2.21 SENSe[1|2]:POWer:REFerence:STATe

(1) Function

Turns ON/OFF the reference measurement

(2) Program message

SENSe[1|2]:POWer:REFerence:STATe <sw>

SENSe[1|2]:POWer:REFerence:STATe?

(3) Response message

SENSE1|2:POWER:REFERENCE:STATE <status>

(4) Parameter

<sw>:= {ON,OFF,1,0}

<status>:= {1,0}

1 ON

0 OFF

(5) Explanation

The command sets ON/OFF of the reference measurement.

9-19

9.2 Optical Sensor

9.2.22 SENSe[1|2]:POWer:REFerence:STATe:RATio
(1) Function

Reference selection

(2) Program message
SENSe[1|2]:POWer:REFerence:STATe:RATio <sel>

SENSe[1|2]:POWer:REFerence:STATe:RATio?

(3) Response message
SENSE1|2:POWER:REFERENCE:STATE:RATIO <status>

(4) Parameter
<sel>:= {TOA,TOB,TOREF,0,1,2}

<status>:= {0,1,2}

0 TOA

1 TOB

2 TOREF

(5) Explanation
This command sets the method of the reference measurement.

With <sel>, specify the reference measurement method as shown below.

<sel> Measurement method

TOA (0) (measurement value of Channel 2) – (measurement value of Channel 1)

TOB (1) (measurement value of Channel 1) – (measurement value of Channel 2)

TOREF (2) (measurement value of specified channel) – (standard value)

Where, the standard value is (reference value) + (relative value).

"TOA" and "TOB" are effective only for "SENSe2" and "SENSe1," respectively.

"TOREF" is effective for both SENSe1 and SENSe2.

9.2.23 SENSe[1|2]:POWer:UNIT
(1) Function

Switches the unit system

(2) Program message
SENSe[1|2]:POWer:UNIT <unit>

SENSe[1|2]:POWer:UNIT?

(3) Response message
SENSE1|2:POWER:UNIT <unit>

(4) Parameter
<unit>:= {DBM,W}

(5) Explanation
This command switches the display unit system of the optical power mea-

surement.

Section 9 Details on Device Messages

9-20

9.2.24 SENSe[1|2]:POWer:WAVelength

(1) Function

Specifies the wavelength

(2) Program message

SENSe[1|2]:POWer:WAVelength <wavelength>[<unit>]

SENSe[1|2]:POWer:WAVelength?

(3) Response message

SENSE1|2:POWER:WAVELENGTH <wavelength>

(4) Parameter

<wavelength>:= {f(m)|380 × 10–9 ≤ f ≤ 1800 × 10–9}

<wavelength>:= {f(Hz)|166.551 × 1012 ≤ f ≤ 788.927 ×
1012}

<unit>:= {NM,UM,M,HZ}

(5) Explanation

This command sets the wavelength compensation to the wavelength of

<wavelength>.

The setting range and resolution of the wavelength are dependent on the op-

tical sensor unit.

If the unit is omitted in the program message, m is assumed.

The response message is output in accordance with current unit system (m or

HZ).

9.2.25 SENSe[1|2]:POWer:WAVelength:UNIT

(1) Function

The display unit of the wavelength

(2) Program message

SENSe[1|2]:POWer:WAVelength:UNIT <unit>

SENSe[1|2]:POWer:WAVelength:UNIT?

(3) Response message

SENSE1|2:POWER:WAVELENGTH:UNIT <unit>

(4) Parameter

<unit>:= {M,HZ}

(5) Explanation

This command switches the display unit of the wavelength.

9-21

9.2 Optical Sensor

9.2.26 SENSe[1|2]:TRIGger:COUNt

(1) Function

Sets the number of times of measurement

(2) Program message

SENSe[1|2]:TRIGger:COUNt <count>

(3) Response message

SENSE1|2:TRIGGER:COUNT <count>

(4) Parameter

<count>:= {n|1 ≤ n ≤ 1000}

(5) Explanation

Sets the number of logging data items.

9.2.27 SENSe[1|2]:TRIGger[:SEQuence][:IMMediate]

(1) Function

Re-start the statistical measurement.

(2) Program message

SENSe[1|2]:TRIGger[:SEQuence][:IMMediate]

(3) Explanation

This command measures the minimum, maximum, and peak-to-peak values

of the measurement data.

Section 9 Details on Device Messages

9-22

9.2.28 READ[1|2]

(1) Function

Starts the high-speed transfer mode

(2) Program message

READ[1|2]?

(3) Response message

<level>

(4) Parameter

<level>:= <NR3>

(5) Explanation

The mode is switched to the high-speed transfer mode and the current mea-

surement data is returned at high-speed.

Data is transferred at a higher speed than FETCh[1|2][:SCALar]

:POWer[:DC]. The measurement data is an absolute value in dBm units.

The high-speed transfer mode is turned ON when this command is executed

once. During the high-speed transfer mode, commands other than read out

and high-speed transfer mode end command are invalid. To end the high-

speed transfer mode, use READ[1|2]:ABORt command (refer to Section

9.2.29.) In the high-speed transfer mode only one channel is valid. A sample

program is shown in Section 10.2.

9.2.29 READ[1|2]:ABORt

(1) Function

Stops the high-speed transfer mode

(2) Program message

READ[1|2]:ABORt

(3) Explanation

This command stop the high-speed transfer mode.

9-23

9.3 Light Source
[1|2] indicates the channel number into which the light source to be controlled is

inserted. If the optical sensor is inserted into Channel 1, it can be omitted. The
brackets ([]) are not required.
Example: SOURCE1:POWER:STATE ON SOURCE2:POWER:STATE?

SOURCE:POWER:STATE 0 etc.

9.3.1 SOURce[1|2]:AM[:INTerval]:FREQuency
(1) Function

Sets the modulation frequency

(2) Program message
SOURce[1|2]:AM[:INTerval]:FREQuency CW|<freq>[<unit>]

SOURce[1|2]:AM[:INTerval]:FREQuency?

(3) Response message
SOURCE1|2:AM:INTERVAL:FREQUENCY <freq>

(4) Parameter
<freq>:= {0,270,1000,2000} (Unit: Hz)
<unit>:= {HZ,KHZ}

(5) Explanation
This command sets the optical output to CW or the modulation frequency
specified in <freq>.
If the unit of <freq> is omitted, Hz is assumed. If the unit is specified in
<unit>, it is set in the specified unit. For 0 Hz, CW is set.
The response message is always output in Hz.

9.3.2 SOURce[1|2]:MEMory:COPY[:NAME]

(1) Function
Stores/reads the measurement conditions

(2) Program message
SOURce[1|2]:MEMory:COPY[:NAME] MC,<no> | <no>,MC

(3) Parameter
<no>:= {0,1,2,3,4,5,6,7,8,9}

(4) Explanation
This command stores or reads the measurement conditions using the
memory number specified with <no>.
"MC, <no>" stores the measurement condition and "<no>, MC" reads the
measurement condition.

If "0" is specified for <no>, only reading is effective because it is the initial
condition setting.

9.3 Light Source

Section 9 Details on Device Messages

9-24

9.3.3 SOURce[1|2]:POWer:ATTenuation

(1) Function

Sets the attenuation

(2) Program message

SOURce[1|2]:POWer:ATTenuation <level>[DB]

SOURce[1|2]:POWer:ATTenuation?

(3) Response message

SOURCE1|2:POWER:ATTENUATION <level>

(4) Parameter

<level>:= {f(dB)|0.00 ≤ f ≤ 6.00}

(5) Explanation

This command reduces the optical output from the maximum output level by

the value specified in <level>.

The setting range and the setting resolution of <level> are dependent on the

light source unit.

<level> is rounded off to the setting resolution.

The attenuation is always output in dB. The unit may be omitted.

9.3.4 SOURce[1|2]:POWer:STATe

(1) Function

Sets the optical output

(2) Program message

SOURce[1|2]:POWer:STATe <sw>

SOURce[1|2]:POWer:STATe?

(3) Response message

SOURCE1|2:POWER:STATE <status>

(4) Parameter

<sw>:= {ON,OFF,1,0}

<status>:= {1,0}

1 ON

0 OFF

(5) Explanation

This command sets ON/OFF of the optical output.

9-25

9.3.5 SOURce[1|2]:POWer:WAVelength
(1) Function:

Sets the wavelength

(2) Program message
SOURce[1|2]:POWer:WAVelength UPPer|LOWer|CENTer

|<wavelength>[<unit>]

SOURce[1|2]:POWer:WAVelength?

(3) Response message
SOURCE1|2:POWER:WAVELENGTH <wavelength>

(4) Parameter
<wavelength>:= {f(m)|380 × 10–9 ≤ f ≤ 1800 × 10–9}
<wavelength>:= {f(HZ)|166.551 × 1012 ≤ f ≤ 788.927 × 1012}
<unit>:= {NM,UM,M,HZ}

(5) Explanation
This command sets the wavelength to <wavelength>.
The range and the resolution of the wavelength are dependent on the light source
unit. The actual setting is rounded off to the resolution.
If the unit is omitted in the program message, m is assumed.
If a unit is attached, set in the unit.

The response message is output in accordance with current unit system (m or HZ).
"UPPer" or "LOWer" can be specified as a parameter only for a two-wavelength
light source. To "UPPer" and "LOWer," the wavelengths of the long wave and short
wave are set, respectively.
Even if the wavelength setting is "UPPer" or "LOWer," the response message re-
turns the wavelengths of the long wave and short wave.
"CENTer" can be specified as a parameter only for a DFB-LD light source. To

"CENTer", the center wavelength (default condition) is set.

9.3.6 SOURce[1|2]:POWer:WAVelength:UNIT
(1) Function

The display unit of the wavelength

(2) Program message
SOURce[1|2]:POWer:WAVelength:UNIT <unit>

SOURce[1|2]:POWer:WAVelength:UNIT?

(3) Response message
SOURCE1|2:POWER:WAVELENGTH:UNIT <unit>

(4) Parameter
<unit>:= {M,HZ}

(5) Explanation
This command switches the display unit of the wavelength.

9.3 Light Source

Section 9 Details on Device Messages

9-26

9.4 Error Messages
(1) Command errors [-100 to -199]

The error codes [-100 to -199] indicate the occurrence of syntax errors in

IEEE 488.2. At this time, bit 5 in the event status register is set.

These errors are issued if any of the following events occur.

(a) The device received a message against the IEEE 488.2 standard.

(b) The device received a header that does not conform to the regulation of

the device specific commands or the common commands.

(c) GET (Group Execute Trigger) was sent to a program message.

Code Message Error detecting condition

-101

-104

-105

-108

-112

-113

-120

-121

-130

-144

Invalid character

Data type error

Get not allowed

Parameter not allowed

Program mnemonic too long

Undefined header

Numeric data error

Invalid character in number

Suffix error

Character data too long

Invalid characters are included in the header or parameter.

The parameter type is different from that of the specified type.

GET (Group Execute Trigger) was sent to a program message.

The number of parameters is larger than the specified number.

The program mnemonic consists of more than 12 characters.

Though the syntax of the header is correct, it is not defined in the device.

There is an error in the numeric data.

An invalid character is included in the numeric data.

There is an error in the suffix.

The character data consists of more than 12 characters.

(2) Execution time error [-200 to -299]

The error codes [-200 to -299] indicate the occurrence of errors in the execution

control unit of the device. If an error of this type occurs, bit 4 in the event status

register is set.

These errors are issued if any of the following events occur.

(a) <PROGRAM DATA> following the header is out of the regulation of

the device.

(b) The program message cannot be executed due to the state of the device.

Code Message Error detecting condition
-220

-221

-222

-224

-240

Parameter error

Setting conflict

Data out of range

Illegal parameter value

Hardware error

There is an error in the parameter.

Though the parameter is correct, it cannot be executed due to the

state of the device.

The numeric data is out of the regulation of the device.

The received parameters is illegal.

The command cannot be executed due to the hardware failure.

9-27

9.4 Error Messages

(3) Device specific error [-300 to -399]

The error codes [-300 to -399] indicate the occurrence of errors other than

command, query, and execution errors. These errors include the failure of

hardware/firmware and self-diagnosis errors.

If an error of this type occurs, bit 3 in the event status register is set.

Code Message Error detecting condition

-310

-315

-350

System error

Configuration memory error

Queue overflow

An error occurred in the system.

Resume memory is lost.

There was an abnormality in self-diagnosis.

(4) Query error [-400 to -499]

The error codes [-400 to -499] indicate the occurrence of errors concerning

the message exchange control protocol in the output queue control. If an

error of this type occurs, bit 2 in the event status register is set.

These errors are issued if any of the following events occur.

(a) Reading is executed from the output queue when there is no output.

(b) The data in the output queue is lost.

Code Message Error detecting condition

-410

-420

-430

Query interrupted

Query unterminated

Query deadlocked

Before the device completes the transmission of the response mes-

sage, an interrupt by a new command occurred.

No query corresponding to the response message to be read is sent.

An attempt is made to buffer the data exceeding the free area in

the storage.

Section 9 Details on Device Messages

9-28.

10-1

This section describes the creation of the remote control program.

This chapter shows an example of program created using Visual BASIC. For

GPIB, the use of National Instrument's hardware and the NI-488.2M software is

assumed. For the handling of Visual BASIC and NI-488.2M, see the individual

operation manuals.

10.1 Precaution on Creating a Programming 10-2

10.2 Program Examples ... 10-3

Section 10 Program Example

Section 10 Program Example

10-2

10.1 Precaution on Programming
On the creating a remote control program, precaution the points in the Table 10-1.

Table 10-1

Description
Devices may be in various states after the device has been operated by

its own operating panels and other programs. In many cases, its states

may not be proper at the start of use. Therefore, these devices must be

initialized to be able to use under certain conditions.

If MLA is received when a command other than a reading command is

sent to the controller before reading the query result, the output buffer

is cleared, resulting in the loss of the response message. Therefore, be

sure to describe the result reading command immediately after read-

ing.

Expected exceptions must be handled in the exception handling sec-

tion in the program so that execution does not stop due to errors.

If a created program is executed for a device that does not have a sub-

set, processing will not proceed. Be sure to check subsets of devices.

Also check that the device conforms to IEEE 488.2.

The RS-232C interface has a 256 byte data area as an internal receive

buffer. However, overflow may occur depending on the processing

type. To prevent errors form occurring due to overflow, do not send a

large volume data (control commands) at a time when performing rem-

ote control using an RS-232C interface. After sending a sequence of

commands, send the "OPC?" command, wait for a response to be

received, then send the next command for synchronization.

Precaution

Be sure to initialize device.

Immediately after sending a

query, do not send any

command other than result

reading.

Avoid exception handling in

the protocol.

Check interface functions

(subset) of individual devices

(GPIB).

Prevent buffer overflow

(RS-232C).

No.

1

�
2

3

4

5

10-3

10.2 Program Examples
(1) Reading the measurement data of the optical sensor unit.

Insert a optical sensor unit into Channel 1 of the MT9810B to measure the

optical power of the external light source.

Read the measurement data with GPIB and display the result.

The GPIB address of the MT9810B is 15.

60%

Sub cmdfetch_Click() ∗ 1
 Dim buf1 As String∗ 20 ∗ 2
 Call Send(0,15,"SYSTEM:COMMUNICATE:GPIB:HEAD 0",NLend) ∗ 3
 Call Send(0,15,"SENSE1:POWER:UNIT DBM",NLend) ∗ 4
 Call Send(0,15,"FETCH1:SCALAR:POWER:DC?",NLend) ∗ 5
 Call Receive(0,15,buf1,STOPend) ∗ 6
 lblPwr.Caption=buf1 ∗ 7
End Sub ∗ 8

∗ 3-∗ 4 OTS initial setting

∗ 5-∗ 6 Data reading

∗ 7 Result output

10.2 Program Examples

Section 10 Program Example

10-4

(2) Reading the measurement data of the optical sensor unit. (High-speed trans-

fer mode)

Insert a optical sensor unit into Channel 1 of the MT9810B to measure the

optical power of the external light source.

Read out the measurement data at 1000 times with GPIB and display the

result.

The GPIB address of the MT9810B is 15.

60%

SSub cmdfetch_Click() ∗ 1
 Dim buf1 As String∗ 20 ∗ 2
 Call Send(0,15,"READ1?",NLend) ∗ 3
 For I=0 To 1000 ∗ 4
 Call Receive(0,15,buf1,STOPend) ∗ 5
 lblpwr.Caption=buf1 ∗ 6
 Next I ∗ 7
 Call Send(0,15,"READ1:ABOR",NLend) ∗ 8
End Sub ∗ 9

∗ 3 Switching to the high-speed transfer mode

∗ 4-∗ 7 Reading out the data 1000 times and indicating it.

∗ 8 Ending high-speed transfer mode

10-5

(3) Measure the attenuator value of the light source unit using a optical sensor.

Insert the light source unit and the optical sensor unit into Channel 1 and

Channel 2, respectively, of the MT9810B and connect these units using opti-

cal fibers. Measure the relative value of attenuation while changing the at-

tenuator value of the light source unit one after another using the optical

sensor unit and display the result.

The GPIB address of the MT9810B is 15.

83%

Sub cmdstart_Click() ∗ 1
 Dim buf1 As String∗ 15 ∗ 2
 Dim strAttStep As String∗ 5 ∗ 3
 Dim strAttStop As String∗ 5 ∗ 4
 Dim strAtt As String∗ 5 ∗ 5
 Dim sglAttStep As Single ∗ 6
 Dim sglAttStop As Single ∗ 7
 Dim sglAtt As Single ∗ 8
'

 chrAttStep=txtStep.Text ∗ 9
 chrAttStop=txtStop.Text ∗ 10
 sglAttStep=val(chrAttStep) ∗ 11

10.2 Program Examples

Section 10 Program Example

10-6.

 sglAttStop=val(chrAttStop) ∗ 12
'

 Call Send(0,15,"SOURCE1:POWER:STATE 1",NLend) ∗ 13
 Call Send(0,15,"SOURCE1:POWER:ATTENUATION 0",NLend) ∗ 14
 Call Send(0,15,"FETCH2:SCALAR:POWER:DC?",NLend) ∗ 15
 Call Receive(0,15,buf1,STOPend) ∗ 16
 lblResult.Caption="ATT=0.0 dB P0="+buf1 ∗ 17
'

 Call Send(0,15,"SENSE2:POWER:REFERENCE:DISPLAY",NLend) ∗ 18
 sglAtt=sglAttStep ∗ 19
 Do ∗ 20
 chrAtt=str(sglAtt) ∗ 21
 Call Send(0,15,"SOURCE1:POWER:ATTENUATION"+chrAtt,NLend) ∗ 22
 Call Send(0,15,"FETCH2:SCALAR:POWER:DC?",NLend) ∗ 23
 Call Receive(0,15,buf1,STOPend) ∗ 24
 lblResult.Caption=lblResult.Caption+chr(13) ∗ 25
 lblResult.Caption=lblResult.Caption+"ATT="+chrAtt+"dB Pr="+buf1 ∗ 26
 sglAtt=sglAtt + sglAttStep ∗ 27
 If sglAtt > sglAttStop Then ∗ 28
 Exit do ∗ 29
 End If ∗ 30
 Loop ∗ 31
End Sub ∗ 32

∗ 13 Turns ON the optical output of the light source unit.

∗ 14 Sets the attenuation of the light source unit to 0 dB.

∗ 15-∗ 16 Measures the power using the optical sensor unit.

∗ 17 Displays the measurement result.

∗ 18 Sets the optical sensor unit to the relative value measurement mode.

∗ 22 Sets the attenuation of the light source unit.

∗ 23-∗ 24 Measures the power using the optical sensor unit.

∗ 25-∗ 26 Displays the measurement result.

∗ 28-∗ 30 Judges the repetition condition.

NOTE:
In the actual measurement, insert a waiting time of around five seconds

between ∗ 14 and ∗ 15 and between ∗ 22 and ∗ 23 in order to stabilize the

output of the light source unit.

11-1

This section explains the measuring instrument drivers (MX981001A) used to

control the MT9810A remotely under LabVIEW.

LabVIEW drivers are modules in which command send and receive functions are

incorporated, allowing measuring instruments to be controlled under the U.S.

National Instruments Graphic Programming System "LabVIEW." Using these

drivers, the MT9810A can be remotely controled without remembering control

commands.

To use this drivers, a controller in which National Instruments LabVIEW soft-

ware (Windows version) is installed is required.

The drivers have been created using LabVIEW Ver. 4.1 (Windows version).

Refer to the LabVIEW User's Guide for how to use LabVIEW.

LabVIEW is a trademark of U.S. National Instruments Corporation.

Windows is a trademark of U.S. Microsoft Corporation.

About LabVIEW ... 11-2

11.1 Installation .. 11-2

11.2 Program Example .. 11-3

11.3 List of LabVIEW Drivers ... 11-6

11.4 Description of LabVIEW Driver Functions 11-7

11.4.1 Common Parameters .. 11-7

11.4.2 Description of functions ... 11-8

Section 11 LabVIEW Drivers

Section 11 LabVIEW Drivers

11-2

About LabVIEW

LabVIEW is a graphical program language suitable for controlling measuring

instruments and saving and analyzing data.

LabVIEW to creates a program like drawing a circuit diagram, so it is easier to get

used to compared with text-based program languages. The execution speed is

almost the same as the C language.

LabVIEW supports various libraries related to measuring instrument control and

data saving, analysis, and display. Using LabVIEW and measuring instrument

drivers, the graphical user interface (GUI) program can be created easily.

11.1 Installation
The following file is stored in the attached floppy disk MX981001A.

MT9810.LLB

Installation example

(1) On X:LABVIEW ("X" is the drive name on which LabVIEW is installed),

create a directory "MT9810.LIB."

(2) Copy the file MT9810.LLB to this directory.

11-3

11.2 Program Example
This section gives examples of programs created using the LabVIEW driver.

This section creates a program of optical power measurement using GPIB control

in the same manner as the Section "10.2 Program example 1." In this program

example, the GPIB address of the MT9810A is 15.

This section uses the following four drivers.

MT9810 Initialize(GPIB).vi Preparation for communication using GPIB

MT9810 Config.Sensor.vi Setting of the optical sensor unit

MT9810 Sensor.Fetch.vi Reading of the measurement data from the optical

sensor unit

MT9810 Error.message.vi Displaying of the error message

(1) Arranging the drivers in the block diagram

Arrange the above drivers in order.

83%

11.2 Program Example

Section 11 LabVIEW Drivers

11-4

(2) Arranging controllers and displays on the front panel window.

Double-clicking on the icon of MT9810 Initialize(GPIB).vi on the diagram

window will open the LabVIEW driver window. Copy the controllers sub-

ject to GPIB address input from this window onto the front panel window.

In the same manner, copy the displays for displaying measurement data from

the icon of MT9810 Sensor.Fetch.vi.

83%

11-5

(3) Connecting displays, controllers, and icons.

Connect driver terminals with wires as shown below.

83%

11.2 Program Example

Section 11 LabVIEW Drivers

11-6

11.3 List of LabVIEW Drivers
The file name of the LabVIEW driver VI is MT9810 (function name).vi.

The common drivers are used for GPIB and RS-232C, excluding (Initialize).

Table 11-1 Sample/utility

File name Function

MT9810 VI tree.vi

MT9810 Example1.vi

MT9810 Example2.vi

MT9810 Example3.vi

MT9810 Interactive.vi

MT9810 Error Message.vi

Loading all drivers

Simple program example

Simple program example

Simple program example

Communication in device message level

Error code and detailed information

Table 11-2 Main frame

File name Function
MT9810 Initialize(GPIB).vi

MT9810 Initialize(RS232C).vi

MT9810 Reset.vi

MT9810 Self-Test.vi

MT9810 Config Instrument.vi

GPIB preparation

RS-232C preparation

Main frame resetting

Internal self-test

Main frame parameter setting/query

Table 11-3 Optical sensor unit

File name Function

MT9810 Config Sensor Zeroing.vi

MT9810 Config Sensor_1.vi

MT9810 Config Sensor_2.vi

MT9810 Config Sensor Wavelength.vi

MT9810 Config Sensor Ranging.vi

MT9810 Config Sensor Reference.vi

MT9810 Sensor Fetch.vi

MT9810 Config Logging Parameter.vi

MT9810 Read Logging Values.vi

MT9810 MinMax Values.vi

Zero-set

Parameter setting/query

Parameter setting/query

Measurement wavelength setting/query

Measurement range setting/query

Reference measurement setting/query and execution/stop

Measurement data query

Logging execution/stop

Outputting logging data

Resetting or output of measurement data of maximum/minimum values

Table 11-4 Light source unit

File name Function

MT9810 Config Source.vi

MT9810 Config Source Output.vi

Parameter setting/query

ON/OFF of optical output

11-7

11.4 Description of LabVIEW Driver Functions

11.4 Description of LabVIEW Driver Functions
This section explains functions and input/output parameters of LabVIEW drivers.

The LabVIEW driver receives data and setting values through the terminals on

the left of the icon, performs the specified processing according to the input pa-

rameters, and outputs the processing results through the terminals on the right

side of the icon.

100%
channel (1)

instr handle in

error in (no error)

instr handle out

Reading

error out

<Input parameter>

MT9810 Sensor Fetch.vi

<Output parameter>

In the explanation of parameters in this chapter, the words in the brackets ([])

following the variable name indicate variable types.

11.4.1 Common Parameters

This section explains the input/output parameters used in most of the LabVIEW

drivers.

instr handle in [I32]

A designator of MT9810 Gloval (global variable, one-dimensional array of clus-

ter) that stores the GPIB address, serial port number, and communication param-

eter setting. Initialize.vi does not contain this parameter.

instr handle out [I32]

Outputs the value of Instr handle in. Close.vi does not contain this parameter.

error in [clust]

Outputs the error occurrence state before executing VI.

status [bool] Indicates presence/absence of error.

"True" indicates the occurrence of an error.

code [I32] .. Indicates the error code at the time of error

occurrence (when the status is set to True).

source [str] Indicates VI in which the error occurred.

error out [clust]

Outputs the error occurrence status after executing VI. The contents of the cluster

are the same as those of error in.

Channel [I32]

Indicates the unit channel number (VI for unit only).

Section 11 LabVIEW Drivers

11-8

11.4.2 Description of functions

(1) Sample/utility VI

MT9810 VI tree.vi
MT9810

VI Tree

All LabVIEW drivers are loaded on VI diagram. (Note that SubVI is not in-

cluded) It can be used as a list.

MT9810 Example1.vi
MT9810
EXAMPLE�

1

A simple program example using the LabVIEW driver.

Takes in the display value of the optical sensor unit in the interval set in Measure-

ment Interval and displays it in the Reading display and in the chart. It sets and

executes the optical sensor channel and the GPIB/RS-232 controller. (The GPIB,

RS-232C parameter is placed at the right end of the window in a hidden manner)

The chart is cleared by pressing the clear button. To end the program, press the

Exit button.

MT9810 Example2.vi
MT9810
EXAMPLE�

2

A simple program example using the LabVIEW driver.

Displays the state of reference measurement. (Two optical sensor units are re-

quired) It sets and executes the GPIB/RS-232 controller. (The GPIB, RS-232C

parameter is placed at the left end of the window in a hidden manner) If the fetch

button is pressed after changing the optical sensor channel, Absolute Unit, Refer-

ence State, and Level Value arbitrarily, the measurement values and the reference

measurement values in Channels 1 and 2 are displayed. To end the program,

press the Exit button.

MT9810 Example3.vi
MT9810
EXAMPLE�

3

A simple program example using the LabVIEW driver.

Displays the maximum and minimum measurement values. It sets and executes

the optical sensor channel and the GPIB/RS-232 controller. (The GPIB, RS-

232C parameter is placed at the right end of the window in a hidden manner) The

maximum value, minimum value, the difference between the maximum and

minimum values, and elapsed time are displayed. The maximum and minimum

values are reset by pressing the Reset button. To end the program, press the Exit

button.

11-9

11.4 Description of LabVIEW Driver Functions

MT9810 Interactive.vi
MT9810
�
LabVIEW

This driver makes communication with the MT9810A in the device message

level. Set the GPIB/RS-232C and enter a device message of transmitting to the

MT9810A in either Write Buffer 1, 2, 3, or 4. Specify the Write Buffer number of

the device message to be actually sent with the switch and execute it. If a query

command is sent, a response message is displayed in the Read Buffer.

MT9810 Error Message.vi
MT9810
Error�
Msg

This driver reports the error code and its detailed information. After executing

some LabVIEW driver VIs, execute this driver to check the error information

Parameter explanation

• type of dialog [int] Select the style of the dialog to be dis-

played when an error occurs.

0: The dialog is not displayed.

1: OK button dialog

2: Continuance and stop button dialog

• status [bool] True if an error occurs.

• code [int] The corresponding error code is output.

0 indicates that there is no error

A negative code indicates that an error occurred.

A positive code indicate a warning.

• error message [str] Outputs the explanation of the detected er-

ror.

(2) Main frame related VI

MT9810 Initialize(GPIB).vi
MT9810
Initialize�
(GPIB)

This driver makes preparation for starting communication with the measuring

instrument using GPIB.

Actual preparations are as follow:

1. Send device clear.

2. Check the ID of the main frame. (there are choices)

3. Execute reset (level 3). (there are choices)

4. Set the header of the response message to OFF.

Parameter explanation

• GPIB address [V8] GPIB address

• Reset [bool] Switching of reset operation.

• ID Query [bool] Switching of ID check

Section 11 LabVIEW Drivers

11-10

MT9810 Initialize(RS232C).vi
MT9810
Initialize�
(RS232)

This driver makes preparation for starting communication with the measuring

instrument using RS-232C.

Actual preparations are as follow:

1. Set the serial port parameters.

2. Check the ID of the main frame. (selectable)

3. Executes reset (level 3). (selectable)

4. Set the header of the response message to OFF.

Parameter explanation

• RS-232C Parameter[clust] Serial port setting value

Port No. (0:COM1) [V8] Serial port number

baud rate (bps) [V16] Baud rate

stop bit [V16] Stop bit

parity bit [V16] Parity bit

character (bit) [V16] Character length

• Reset [bool] Switching of reset operation.

• ID Query [bool] Switching of ID check

MT9810 Reset.vi
MT9810

Reset

This driver resets the main frame.

Parameter explanation

(None)

MT9810 Self-Test.vi
MT9810

Self-Test

This driver makes internal self-test and returns the presence/absence of an error.

The test result is not output to the "error out" cluster.

Parameter explanation

• Self-test Error [bool] True if the test result is error.

11-11

11.4 Description of LabVIEW Driver Functions

MT9810 Config Instrment.vi
MT9810
config�
instr

This driver sets/inquires the parameters (display ON/OFF, brightness, date, time,

buzzer level) of the main frame.

Parameter explanation

• Display Brightness [I32] Display brightness setting

• Set Date [clust] Date setting. Enter all values of Year,

Month, and Day.

Year [I32]

Month [I32]

Day [I32]

• Set Time [clust] Time setting. Enter all values of Hours,

Minutes, and Seconds.

Hours [I32]

Minutes [I32]

Seconds [I32]

• Beep Level [I32] Buzzer sound level setting

(3) Optical sensor unit related VI

MT9810 Config Sensor Zeroing.vi
MT9810

Zero

Sensor

This driver executes zero-set and outputs either normal end or error. After zero-

set operation is ended or after an error occurs, it ends VI. The error is output to

the "error out" cluster.

Parameter explanation

(None)

MT9810 Config Sensor_1.vi
MT9810

Config1

Sensor

This driver sets/inquires the parameters (display unit system, calibration factor,

and modulation frequency).

Parameter explanation

• Absolute Units [I32] Switching of display unit system.

• Calibration Factor [double] ... Calibration factor

• Modulation Frequency [I32] .. Modulation frequency setting value

Section 11 LabVIEW Drivers

11-12

MT9810 Config Sensor_2.vi
MT9810

Config2

Sensor

This driver sets/inquires the parameters (measurement interval, bandwidth, num-

ber of times of averaging).

Parameter explanation

• Measurement Interval [double] Measurement interval setting value. It

is rounded off to the resolution.

• Bandwidth [double] Bandwidth setting value

• Averaging Time [I32] Setting value of number of times of av-

eraging

MT9810 Config Sensor Wavelength.vi
MT9810

Wave-�
length

Sensor

This driver sets/inquires the parameters (measurement wavelength).

Parameter explanation

• Wavelength Value [double] ... Wavelength setting value. The setting

range and resolution of the wavelength are

dependent on the optical sensor unit. The

unit specified in Wavelength Unit is used.

• Wavelength Units [bool] Switching of the unit of wavelength

MT9810 Config Sensor Ranging.vi
MT9810

Range

Sensor

This driver sets/inquires the measurement range.

Parameter explanation

• Power Range [I32] Power range setting value. Depending on

the optical sensor unit, some values cannot

be set.

11-13

11.4 Description of LabVIEW Driver Functions

MT9810 Config Sensor Reference.vi
MT9810

Refer-�
ence

Sensor

This driver sets/inquires the reference measurements (reference measurement

method, reference value) and executes/stops the reference measurement.

Parameter explanation

• Reference State [I32] Switching of the reference measurement

method. "Reference to the other" is (mea-

surement value) – (measurement value of

other channel) – (reference value). "Refer-

ence to Value" is (measurement value) –

(reference value).

• Level Value [double] Reference value. The setting range differs

depending on the reference measurement

method. The unit of the setting value is de-

pendent on the display unit system. For

"Reference to the other," specify in –

199.999 to 199.999 dB. For "Reference to

Value," specify in 1E-16 to 99.999 W or in

–199.999 to 199.999 dBm.

MT9810 Sensor Fetch.vi
MT9810

Fetch

Sensor

This driver inquires the measurement data. The data unit is dBm, W, dB, or %

depending on the display unit system or the reference setting.

Parameter explanation

• Reading [double] Measurement value

MT9810 Config Logging Parameters.vi
MT9810

Logging�
Read

Sensor

This driver executes/stop the logging. To execute the logging, set the number of

samples (the number of measurement data items).

Parameter explanation

• Start/Stop [bool] Switching of logging execution/stop

• Number of Samples [I32] Setting value of number of measurement

data items

Section 11 LabVIEW Drivers

11-14

MT9810 Read Logging Values.vi
MT9810

Logging�
Read

Sensor

This driver outputs the logging data.

Parameter explanation

• Number of Samples [I32] Setting value of number of measure-

ment data items

• Number of Samples taken [I32] ... Number of data items read

• Result Array [double array] Measurement data (log value)

• Data [str] .. Date identifier, unit model name, date

and time of measurement, number of

times of averaging, interval time, num-

ber of data items measured, data statis-

tics (maximum value (dBm), minimum

value (dBm), peak-to-peak value (dB),

average value (dBm)) are output as

shown below.

V1.0,"XXXXXXXXX;YY/MM/DD,hh:mm:ss;XXX;XXX;XXX;XXX,

XXX,XXX,XXX"

MT9810 MinMax Values.vi
MT9810

Min�
Max

Sensor

This driver resets the measurement data of the maximum/minimum values or out-

puts the measurement data of the maximum/minimum value.

Parameter explanation

• Reset [bool] Switching of whether to reset the

maximum/minimum value

• Minimum [double] Minimum value measurement data

(dBm, W). No query is made if reset

operation is performed.

• Maximam [double] Maximum value measurement data

(dBm, W). No query is made if reset

operation is performed.

• Change in Power Level [double] ... The difference between the minimum

and maximum values. No query is

made if reset operation is performed.

11-15

11.4 Description of LabVIEW Driver Functions

(4) Light source unit related VI

MT9810 Config Source.vi
MT9810

Config

Source

This driver sets/inquires the parameters (modulation frequency, attenuation, se-

lection and setting of wavelength)

Parameter explanation

• Frequency [I32] Modulation frequency setting value

• Attenuation Level [double] Attenuation setting value. The setting

range and setting resolution are dependent

on the light source unit.

• Wavelength Level [double] ... Wavelength setting value. For two wave-

length light source, selection of long wave

and short wave is made. The range and

resolution of wavelength are dependent on

the light source unit.

MT9810 Config Source Output.vi
MT9810

Output

Source

This driver turns ON/OFF the optical output.

Parameter explanation

• Source Output Signal State [bool] Switching of ON/OFF of optical

output

Section 11 LabVIEW Drivers

11-16.

Remote Control

Read this manual before using the equipment. Keep this manual with the equipment.

Optical Test Set

Operation Manual

MT9810B

M
T9810B

O
ptical T

est S
et R

em
ote C

ontrol
O

peration M
anual

ANRITSU CORPORATION

Printed in Japan
Document No.: M-W1887AE

5-10-27, Minamiazabu, Minato-ku, Tokyo 106-8570 Japan / Phone: 81-3-3446-1111

	Cover
	About This Manual
	Table of Contents
	Section 1 Overview
	1.1 Overview
	1.2 Selecting the Interface Port
	1.3 Channel Numbers of the Unit

	Section 2 How to Connect
	2.1 Connecting Device Using a GPIB Cable
	2.1.1 Setting the Interface for the Connection Port
	2.1.2 Confirming and Setting the Address

	2.2 Connecting a Device Using an RS-232C Cable
	2.2.1 RS-232C Interface Signal Connection Diagrams
	2.2.2 Setting the Interface of the Connection Port
	2.2.3 Setting RS-232C Interface Conditions

	2.3 Default Value

	Section 3 Specifications
	3.1 GPIB Specifications
	3.2 RS-232C Specifications
	3.3 Device Message List
	3.3.1 IEEE 488.2 common commands and the commands supported bythe MT9810B
	3.3.2 Device Message List

	Section 4 Initial Setting
	4.1 Initialization of Bus by IFC Statement
	4.2 Initialization of Message Exchange by DCL andSDC Bus Commands
	4.3 Initialization of Devices by *RST Command
	4.4 Device States at Power-ON
	4.4.1 Items not changes at Power-ON
	4.4.2 Items related to PSC flag
	4.4.3 Items that change at Power-ON

	Section 5 Listener Input Formats
	5.1 Summary of Listener Input Program Message Syn-tacticalNotation
	5.1.1 Separator, Terminator, and Space Before Header
	5.1.2 General Format of Program Command Message
	5.1.3 General Format of Query Message

	5.2 Program Message Functional Elements
	5.2.1 <TERMINATED PROGRAM MESSAGE>
	5.2.2 <PROGRAM MESSAGE TERMINATOR>
	5.2.3 <white space>
	5.2.4 <PROGRAM MESSAGE>
	5.2.5 <PROGRAM MESSAGE UNIT SEPARATOR>
	5.2.6 <PROGRAM MESSAGE UNIT>
	5.2.7 <COMMAND MESSAGE UNIT>/<QUERY MESSAGE UNIT>
	5.2.8 <COMMAND PROGRAM HEADER>
	5.2.9 <QUERY PROGRAM HEADER>
	5.2.10 <PROGRAM HEADER SEPARATOR>
	5.2.11 <PROGRAM DATA SEPARATOR>

	5.3 Program Data Format
	5.3.1 <CHARACTER PROGRAM DATA>
	5.3.2 <DECIMAL NUMERIC PROGRAM DATA>
	5.3.3 <SUFFIX PROGRAM DATA>
	5.3.4 <NON-DECIMAL NUMERIC PROGRAM DATA>
	5.3.5 <STRING PROGRAM DATA>
	5.3.6 <ARBITRARY BLOCK PROGRAM DATA>
	5.3.7 <EXPRESSION PROGRAM DATA>

	Section 6 Talker Output Format
	6.1 Differences in Syntax between Listener Input Formats and Talker Output formats
	6.2 Response Message Functional Elements
	6.2.1 <TERMINATED RESPONSE MESSAGE>
	6.2.2 <RESPONSE MESSAGE TERMINATOR>
	6.2.3 <RESPONSE MESSAGE>
	6.2.4 <RESPONSE MESSAGE UNIT SEPARATOR>
	6.2.5 <RESPONSE MESSAGE UNIT>
	6.2.6 <RESPONSE HEADER SEPARATOR>
	6.2.7 <RESPONSE DATA SEPARATOR>
	6.2.8 <RESPONSE HEADER>
	6.2.9 <RESPONSE DATA>

	Section 7 Common Commands
	7.1 Classification of Supported Commands and References

	Section 8 Status Structure
	8.1 IEEE 488.2 Standard Status Model
	8.2 Status Byte Register
	8.2.1 ESB and MAV Summary Message
	8.2.2 Device Dependent Summary Message
	8.2.3 Reading and Clearing the Status Byte Register

	8.3 Enabling the SRQ
	8.4 Standard Event Status Register
	8.4.1 Definition of Standard Event Status Register Bits
	8.4.2 Details on Query Errors
	8.4.3 Reading, Writing, and Clearing the Standard Event Status Register
	8.4.4 Reading, Writing, and Clearing the Standard Event Status EnableRegister

	8.5 Queue Model
	8.6 Extended Status Bytes
	8.6.1 Status register
	8.6.2 Operation Status Register
	8.6.3 QUESTIONABLE Status Register
	8.6.4 SOURCE status register

	Section 9 Details on Device Messages
	9.1 Main Frame
	9.1.1 DISPlay:BRIGhtness
	9.1.2 DISPlay[:STATe]
	9.1.3 SYSTem:BEEPer:STATe
	9.1.4 SYSTem:CHANnel:STATe
	9.1.5 SYSTem:COMMunicate:GPIB:HEAD
	9.1.6 SYSTem:COMMunicate:SERial:HEAD
	9.1.7 SYSTem:DATE
	9.1.8 SYSTem:ERRor
	9.1.9 SYSTem:TIME

	9.2 Optical Sensor
	9.2.1 ABORt[1|2]
	9.2.2 FETCh[1|2][:SCALar]:POWer[:DC]
	9.2.3 SENSe[1|2]:AVERage:COUNt
	9.2.4 SENSe[1|2]:BANDwidth
	9.2.5 SENSe[1|2]:BANDwidth:AUTO
	9.2.6 SENSe[1|2]:CORRection:COLLect:ZERO
	9.2.7 SENSe[1|2]:CORRection[:LOSS[:INPut[:MAGNitude]]]
	9.2.8 SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:MAXimum
	9.2.9 SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:MINimum
	9.2.10 SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:PTPeak
	9.2.11 SENSe[1|2]:FILTer:BPASs:FREQuency
	9.2.12 SENSe[1|2]:INITiate[:IMMediate]
	9.2.13 SENSe[1|2]:MEMory:COPY[:NAME]
	9.2.14 SENSe[1|2]:MEMory:DATa
	9.2.15 SENSe[1|2]:MEMory:DATa:INFO
	9.2.16 SENSe[1|2]:POWer:INTerval
	9.2.17 SENSe[1|2]:POWer:RANGe:AUTO
	9.2.18 SENSe[1|2]:POWer:RANGe[:UPPer]
	9.2.19 SENSe[1|2]:POWer:REFerence
	9.2.20 SENSe[1|2]:POWer:REFerence:DISPlay
	9.2.21 SENSe[1|2]:POWer:REFerence:STATe
	9.2.22 SENSe[1|2]:POWer:REFerence:STATe:RATio
	9.2.23 SENSe[1|2]:POWer:UNIT
	9.2.24 SENSe[1|2]:POWer:WAVelength
	9.2.25 SENSe[1|2]:POWer:WAVelength:UNIT
	9.2.26 SENSe[1|2]:TRIGger:COUNt
	9.2.27 SENSe[1|2]:TRIGger[:SEQuence][:IMMediate]
	9.2.28 READ[1|2]
	9.2.29 READ[1|2]:ABORt

	9.3 Light Source
	9.3.1 SOURce[1|2]:AM[:INTerval]:FREQuency
	9.3.2 SOURce[1|2]:MEMory:COPY[:NAME]
	9.3.3 SOURce[1|2]:POWer:ATTenuation
	9.3.4 SOURce[1|2]:POWer:STATe
	9.3.5 SOURce[1|2]:POWer:WAVelength
	9.3.6 SOURce[1|2]:POWer:WAVelength:UNIT

	9.4 Error Messages

	Section 10 Program Example
	10.1 Precaution on Programming
	10.2 Program Examples

	Section 11 LabVIEW Drivers
	About LabVIEW
	11.1 Installation
	11.2 Program Example
	11.3 List of LabVIEW Drivers
	11.4 Description of LabVIEW Driver Functions
	11.4.1 Common Parameters
	11.4.2 Description of functions

