MT9810B
Optical Test Set
Remote Control

Operation Manual

Second Edition

To ensure that the MT9810B Optical Test Set
is used safely, read the safety information in
the MT9810B Optical Test Set Manual first.
Keep this manual with the Optical Test Set.

Measurement Solutions

ANRITSU CORPORATION

Document No.: M-W1887AE-2.0

MT9810B Optical Test Set Remote Control
Operation Manual

28 June 2001 (First Edition)
1 July 2002 (Second Edition)

Copyright © 2001-2002, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of
the publisher.

The contents of this manual may be changed without prior notice.

Trademark

Visual BASIC and Windows are registered trademarks of Microsoft
Corporation.

NI-488.2M and LabVIEW are registered trademark of National In-
struments Corporation.

About This Manual

This manual describes the remote control of the MT9810B Optical Test Set.
This product can control the MT9810B and incorporate the measurement result
through the GPIB/RS-232C interface.

Table of Contents

About This Manualccovveiviiiiiiieeia

Sectionl OVeIrVIEW ..oooveeivieeeeeeeeeeeeeaeaeenn,

1.1 OVEIVIEW vttt
1.2 Selecting the Interface POrtccccovieiiiieeiiieene,
1.3 Channel Numbers of the Unitcoooeiiiiiiiiiinnnes

Section2 How to ConnecCt....ccoovevvevenennenn...

2.1 Connecting Device Using a GPIB Cable
2.2 Connecting a Device Using an RS-232C Cable
2.3 Default Valueccoociiiiiiiiiiie e

Section 3 Specificationscccoeeeeeeeenne,

3.1 GPIB Specificationsccoeeiiiiiiieiiiiiieiee e
3.2 RS-232C Specificationsoccveeeeeeiiiiieiee e
3.3 Device MeSsage LiSt........coccvierieeeiiieeeiiiie e

Section 4 Initial Setting ...

4.1 Initialization of Bus by IFC Statement................c.......
4.2 Initialization of Message Exchange by DCL and
SDC Bus COmMMANAScceviviririiiieiiiee e
4.3 Initialization of Devices by [(RST Command...............
4.4 Device States at POWer-ONccccoovvivieieeiiniiieeeenn,

Section 5 Listener Input Formats

5.1 Summary of Listener Input Program Message
Syntactical Notationccocvveerivieniiee e

5.2 Program Message Functional Elements.....................

5.3 Program Data FOrmatccccoeeeriiinieeeiiniiieeee e

Section 6 Talker Output Format.................

6.1 Differences in Syntax between Listener Input Formats and

Talker Output fOrmMatscooviuiiieeiiiiiiieee e
6.2 Response Message Functional Elements

1-1
1-2

1-2
1-2

2-1

2-4

2-8

3-1
3-2
3-2
3-3

4-1
4-3

4-5

4-8

5-3
5-7
5-16

6-1

Section 7 Common Commands....

7.1 Classification of Supported

Commands and References

Section 8 Status Structure

8.1 IEEE 488.2 Standard Status Model
8.2 Status Byte Registerccccovvviiiieeininnnn.
8.3 Enabling the SRQoccviiiiiiiiiieee
8.4 Standard Event Status Register
8.5 Queue Modelcccceeeiiiiiiiiiii e
8.6 Extended Status Bytesccccccvvvvirenne

Section 9 Details on Device Messages

9.1 Main Frameccccooveeeiiiieniiic e
9.2 Optical SENSOrcceiiiiiiiiiieiiiiieee e
9.3 Light SOUICE.......evviiiiiiiiiieee e
9.4 Error MESSAQesScceevvvririiiiiiiiiiiinieies

Section 10 Program Example........

10.1 Precaution on Programmingccc.......
10.2 Program Examplesccoccevvvveriineennnenne

Section 11 LabVIEW Drivers

11.1 Installationccvvvvieeeiiiieiiieieee e
11.2 Program Exampleccccceeviiieniinciineenne
11.3 List of LabVIEW Driversccccccceeeeeennn...

11.4 Description of LabVIEW Driver Functions

8-10
8-13
8-15

11-2
11-3
11-6
11-7

Section 1 Overview

This section outlines the remote control functions of the MT9810B Optical Test
Set.

N R @ Y=Y oV 1= PO PR 1-2
1.2 Selecting the Interface POrt ..o 1-2
1.3 Channel Numbers of the Unit..............oovvviieiiiiiiiiiiiiiiiee. 1-2

1-1

Section 1 Overview

1.1

1.2

1.3

Overview

The MT9810B Optical Test Set can perform almost al operations remotely using
acomputer. This product comes standardized with a GPIB interface port (IEEE
Std 488.2-1987) and an RS-232C interface port.

Selecting the Interface Port

The interface port is selected from the front panel of the MT9810B main unit.
The two ports cannot be used at the same time. Refer to the Section 2 "How to
Connect" for more details.

Channel Numbers of the Unit

Up to two units can be mounted on the MT9810B. There are commands that
specify the channel number to which the unit is mounted. The left channel is
Channel 1 and the right channel is Channel 2 as seen from the front.

Channell Channel2

Section 2 How to Connect

This section explains how to connect GPIB and RS-232C cables between the
MT9810B Optical Test Set and external devices such as a host computer, per-
sonal computer, and printer. This section also explains how to set the interfaces
of the MT9810B.

2.1 Connecting Device Using a GPIB Cablec.ccccevivrennnen. 2-2
2.1.1 Setting the Interface for the Connection Port.............. 2-2
2.1.2 Confirming and Setting the Addresscccoccveveenn. 2-3

2.2 Connecting a Device Using an RS-232C Cable..... 2-4
2.2.1 RS-232C Interface Signal Connection Diagrams........ 2-5
2.2.2 Setting the Interface of the Connection Port 2-7
2.2.3 Setting RS-232C Interface Conditionscccceene 2-7

2.3 Default Valuec..oooiiiiiiiiii e 2-8

2-1

Section 2 How to Connect

2.1 Connecting Device Using a GPIB Cable

The MT9810B has a GPIB cable connector mounted on the back panel. Be sure
to connect the GPIB cable before turning on the power.

A maximum of 15 devices, including a controller, can be connected to one sys-
tem. Connect these device in accordance with the conditions shown in the fol-
lowing figure.

GPIB
Connector

Total cable length <20m
Device-to-device cable length <4 m
Number of connectable devices <15

2.1.1 Setting the Interface for the Connection Port

Set the interface of the connection port to GPIB. The setting method is shown
below.

(1) Select "Remote Interface” with the System key.

(2) Switchto "GPIB" with the Select key.

(3) Enter the setting by pressing the Enter key.

—)

(OO L)L
%_J[][][] L]

(1) System (2) Select (3) Enter
(Shift+Prmtr)

2-2

2.1 Connecting Device Using a GPIB Cable

2.1.2 Confirming and Setting the Address

Be sure to set the GPIB address of the MT9810B after turning on the power. Set

the address using the front panel with the MT9810B set to the local mode.

(1) Select "GPIB ADDRESS' with the System key.

(2) Specify the addresswiththe t and | keys. (Theinput addressrangeisfrom
010 30.)

(3) Enter the setting by pressing the Enter key.

J [

—

O

) L L
J L L

;]

V

(1) System
(Shift+Prmtr)

5
|

)1)1 (3) Enter

Section 2 How to Connect

2.2

Connecting a Device Using an RS-232C Cable

The MT9810B has an RS-232C connector mounted on the back panel.

NOTE:
RS-232C connectors are available in 9-pin and 25-pin types. The 9-pin
typeisusually used for DOS/V persona computers, while the 25-pin type
isusually used for the NEC PC9801/PC9821 Series. Before purchasing
an RS-232C cable, check the type of the RS-232C connector on the exter-
nal device. The following two types of RS-232C cables are available as
application parts for this product.

¥ RS-232C cable (for 25-pin type personal computer)

(MT9810B side) (Personal computer side)
D-sub, Length=1m D-sub,
9-pin, 25-pin,
Female Male

¥ RS-232C cable (for DOS/V personal computer)

(MT9810B side) (Personal computer side)
D-sub, Length=1m D-sub,
9-pin, 9-pin,
Female Female

2-4

2.2 Connecting a Device Using an RS-232C Cable

2.2.1 RS-232C Interface Signal Connection Diagrams

The following diagram shows the connection of RS-232C interface signals be-
tween the MT9810B and a personal computer.

MT9810B Personal computer

GND GND
L

CD (NC)
RD
™

DTR (NC)
GND
DSR (NC)
RTS

CTS

RI (NC)

GND
SD
RD
RS
Cs
DR
GND
CD
NC
NC
GND
NC
GND
14 GND
15 ST2
16 NC
17 RT
18 NC
19 NC
20 ER
21 NC
22 NC
23 NC
24 ST1
25 NC

© 0 N O Ol WN P

D-sub, 9-pin, female

[
|
[S S
W NP O OOWNO®UMWNLPR

D-sub, 25-pin, male —

Connection to the external computer with a D-sub 25-pin interface

2-5

Section 2 How to Connect

MT9810B Personal computer
GND GND
CD(NC) 1 —(1 CD
RD 2 (2 RD
D 3 X/ (3 71D
DTR (NC) 4 ——(4 DTR
GND 5 (5 GND
DSR (NC) 6 7/ ——(6 DSR
RTS 7 —(7 RTS
CTS 8 —<—, —(8 CTS
RI(NC) 9 =———— —(9 RI
D-sub, 9-pin, female D-sub, 9-pin, female

Connection to the DOS/V personal computer

2-6

2.2 Connecting a Device Using an RS-232C Cable

2.2.2 Setting the Interface of the Connection Port
Set the interface of the connection port to RS-232C. The setting method is shown

below.

(1) Select "Remote Interface" with the System key.
(2) Switch theinterface to "RS-232C" with the Select key.
(3) Enter the setting by pressing the Enter key.

)

—

)OI

) L) LI
) () UL

%_J [

L]

V

(1) System
(Shift+Prmtr)

(2) Select

(3) Enter

2.2.3 Setting RS-232C Interface Conditions

Set the interface conditions for the RS-232C port of MT9810B to match the inter-
face conditions of the connected external device. The setting method is shown

below.

(1) Select the setting items with the System key.
(2) Specify the setting values with the Select key.
(3) Enter the setting by pressing the Enter key.
The setting items are shown in the Table 2-1.

Table 2-1
Item System key Setting value
Baud rate RS-232C Baudrate 1200/2400/4800/9600/14400/19200 bps
Stop bit RS-232C StopBit 1/2 bit
Parity bit RS-232C PerityBit ODD/EVEN/NONE
Character length RS-232C Character 7/8 bit

2-7

Section 2 How to Connect

2.3 Default Value

The factory-set values are shown in the Table 2-2.

Table 2-2
Setting item Default value
Remote interface GPIB
GPIB address 15
RS-232C baud rate 9600 bps
RS-232C stop bit 1 bit
RS-232C parity bit Even
RS-232C character length 8 hits

2-8.

Section 3 Specifications

This section explains the GPIB standard, RS-232C standard, and device message
list of the MT9810B Optical Test Set.

3.1
3.2
3.3

GPIB SPECIfICAtIONSceiiiiiiiieeiiiiiiee e 3-2
RS-232C SPECIfiCatiONSccoviiuiriiieiiiiiiiieee e 3-2
Device MeSSage LiStcccuvveiiiiiiiiiieiiieeeiec e 3-3
3.3.1 IEEE 488.2 common commands and the commands
supported by the MT9810B 3-5
3.3.2 Device Message LiSt.......cccueeeeiiiiiiieiiiiiiiecee e 3-6

31

Section 3 Specifications

3.1 GPIB Specifications

The GPIB Specifications of the MT9810B is summarized in the Table 3-1.

Table 3-1

Item

Specifications value and description

Function

Conformsto |EEE 488.2.
MT9810B can be controlled from an external controller.

Interface functions

SH1:

AHL:

T6:

L4

RL1:

DC1:
DTO:

Co:

All of source handshake functions are supported.

Data send timing is controlled.

All of acceptor handshake functions are supported.

Datareceive timing is controlled.

Basic talker functions are supported. A serial port function is supported.
A talk-only function is not supported. The function of releasing the talker
with MLA is supported.

Basic listener functions are supported. A listen-only function is not sup-
ported. The function of releasing the listener by MTA is supported.

All of service request/status byte functions are supported.

All of remote/local functions are supported.

A local lockout function is supported.

A parallel poll function is not supported.

All of device clear functions are supported.

A disk trigger function is not supported.

A controller function is not supported.

A controller function is performed during external plot output.

3.2 RS-232C Specifications

The RS-232C Specifications of the MT9810B is summarized in the Table 3-2.

Table 3-2

Item

Specifications

Function

Control from external controller

Communication method

Asynchronous (start-stop), half-duplex

Communication control method

No flow control

Baud rate 1200, 2400, 4800, 9600, 14400, 19200 bps

Data bits 7 bits, 8 bits

Parity Odd parity (ODD), even parity (EVEN), non-parity (NON)
Start bits 1 bit

Stop bits 1 hit, 2 bits

Connector D-sub 9-pin connector, male

3-2

3.3 Device Message List

3.3 Device Message List

Controller

Device messages are data messages which are transferred between a controller
and the devices. These messages are classified into program messages and re-
SpoNse messages.

Program messages are ASCI| messages transferred from a controller to the de-
vices. Program messages are further classified into program commands and pro-
gram queries. These two types of commands are explained later in this manual.
Program commands include device-dependent commands which are exclusively
used for controlling the MT9810B and | EEE 488.2 common commands. |EEE
488.2 common commands are program commands which are commonly appli-
cable to other |IEEE 488.2-ready measuring instruments (including the
MT9810B) on the GPIB interface bus.

Program queries are commands used to get response messages from devices.
Program queries must be transferred from a controller to a device in advance so
that the controller can receive response messages from the device later.
Response messages are ASCI | data messages which are transferred from adevice
to acontroller. Among response messages, status messages, and response mes-
sages corresponding to program queries are listed later in this manual .

—— « Program commands [@ Section 5
—— ¢ Program queries [@ Section 5
—— ¢ |[EEE488.2 common commands [Ifﬁ_\' Section 7

Program message

Device
Responce message
—— Status message [@ Section 8
—— + Responce message [@ Section 6

In program and response messages, numeric data may end with a suffix (unit).

3-3

Section 3 Specifications

The above messages are transferred through the device input/output buffer. The
output buffer is also called an output queue. A brief description of the output
buffer is given below.

Input buffer

Input buffer is an FIFO (first in first out) type memory area, that stores DABs
(program and query messages) temporarily before analysis of syntax and execu-
tion.

The input buffer size of the MT9810B is 256 bytes.

Output queue

Output queue is an FIFO-type queue memory area, that stores all DABS (response
messages) output from a device to a controller until those messages are read by
the controller.

The output queue size of the MT9810B is 256 bytes.

34

3.3 Device Message List

3.3.1 IEEE 488.2 common commands and the commands supported by

the MT9810B

The 39 common commands specified by |EEE 488.2 standard is shown in the
Table 3-3. Among these commands, the commands supported by the MT9810B

are marked with the check marks (V).

Table 3-3
Mnemonic Fully spelled out command name Standardized by IEEE 488.2 Supported by MT9810B

*ADD Accept Address Command Optional

*CAL Calibration Query Optional

*CLS Clear Status Command Required v
*DDT Define Device Trigger Command Optional

*DDT? Define Device Trigger Query Optional

#DLF Disable Listener Function Command Optional

*DMC Define Macro Command Optional

*EMC Enable Macro Command Optional
*EMC? Enable Macro Query Optional

*ESE Standard Event Status Enable Command Required v
+*ESE? Standard Event Status Enable Query Required v
+*BESR? Standard Event Status Register Query Required v
*GMC? Get Macro contents Query Optional

*[DN? Identification Query Required v
*[ST? Individual Status Query Optional
*LMC? Learn Macro Query Optional

*LRN? Learn Device Setup Query Optional

*OPC Operation Complete Command Required v
+*OPC? Operation Complete Query Required v
*OPT? Option Identification Query Optional v

*PCB Pass Control Back Command Other than CO: Required

«*PMC Purge Macro Command Optional

+PRE Parallel Poll Register Enable Command Optional

+*PRE? Parallel Poll Register Enable Query Optional

#*PSC Power On Status Clear Command Optional

«PSC? Power On Status Clear Query Optional

*PUD Protected User Data Command Optional

*PUD? Protected User Data Query Optional

*RCL Recall Command Optional

*RDT Resource Description Transfer Command Optional

*RDT? Resource Description Transfer Query Optional

*RST Reset Command Required v

*SAV Save Command Optional

#*SRE Service Request Enable Command Required v
+*SRE? Service Request Enable Query Required v
*STB? Read Status Byte Query Required v
*TRG Trigger Command DT1: Required

*TST? Self Test Query Required v

*WAI Wait to Continue Command Required v

NOTE:
|EEE 488.2 commands always begin with an asterick (*). Refer to the
Section 7 "Common Commands' for more details.

Section 3 Specifications

3.3.2 Device Message List

The device message list unique to the MT9810B is shown in the Table 3-4, 3-5
and 3-6. There are two types of commands: HP commands and SCPI-compliant
Anritsu original commands. The types of commands are also shown in the table.

Table 3-4 Main frame

Function Command HP | SCPI | Reference
Brightness DISPlay:BRIGhtness v Section 9.1.1
Display ON/OFF DISPlay[:STATe] v Section 9.1.2
Caendar SY STem:DATE v Section 9.1.7
Time SYSTem:TIME v Section 9.1.9
Buzzer SY STem:BEEPer:STATe v Section 9.1.3
Header SY STem:COMM unicate:GPIB:HEAD v Section 9.1.5

SY STem:COMMunicate: SERia:HEAD v Section 9.1.6
Inserted unit SY STem:CHANnNel:STATe v Section 9.1.4
Error SY STem:ERRor v Section 9.1.8

3-6

3.3 Device Message List

Table 3-5 Optical sensor

Function Command HP | SCPI | Reference
Zero-set SENSe[1]2]: CORRection: COL Lect:ZERO v Section 9.2.6
Calibration factor SENSe[1)2]: CORRection[:LOSS:[:INPut[:MAG v Section 9.2.7
Auto range Nitude]]] v Section 9.2.17
Manual range SENSe[1]2]:POWer:RANGe:AUTO v Section 9.2.18
Reference value SENSe[1)2]:POWer:RANGe:[UPPer] v Section 9.2.19
Displays the reference value SENSe[1)2]:POWer:REFerence v Section 9.2.20
Reference measurement SENSe[1)2]:POWer:REFerence:DISPlay v Section 9.2.21
Reference selection SENSe[1]2]:POWer:REFernce:STATe v Section 9.2.22
Unit SENSe[1|2]:POWer:REFernce: STATe:RATIO v Section 9.2.23
Wavelength SENSe[1|2]:POWer:UNIT v Section 9.2.24
Unit of wavelength SENSe[1)2]:POWer:WAVelength v Section 9.2.25
Measurement data SENSe[1]2]:POWer:WAVe ength:UNI v Section 9.2.2
The number of averaging FETCh[1[2][:SCALar]:POWer[:DC] v Section 9.2.3
Auto bandwidth SENSe[1)2]: AV ERage: COUNt Vv Section 9.2.5
Bandwidth SENSe[1|2]:BANDwidth:AUTO v Section 9.2.4
Modulation frequency SENSe[1]2]:BANDwidth v Section 9.2.11
Measurement interval SENSe[1]2]:FILTer:BPASs:FREQuency v Section 9.2.16
The number of measurement SENSe[1|2]:POWer:INTerval Vv Section 9.2.26
Logging SENSe[1]2]: TRIGger: COUNt v Section 9.2.12
Statistical measurement SENSe[12]:INITiate[:IMMediate] vV Section 9.2.27
Measurement stop SENSe[12]: TRIGger[:SEQuence][:IMMediate] v Section 9.2.1
Logging data ABORI[1]2] v Section 9.2.14
Logging data information SENSe[1|2]:MEMory:DATa v Section 9.2.15
Maximum value SENSe[1|2]:MEMory:DATaINFO v Section 9.2.8
Minimum value SENSH 1)2]:FETCH[:SCALa]:POWer[:DCl:MAXimum v Section 9.2.9
Difference between maximum | SENSg1|2]:FETCh[:SCALa]:POWe:DC|:MINimum J Section 9.2.10
and minimum values SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:PTPeak
Measurement conditions SENSe[1|2]:MEMory:COPY[:NAME] v Section 9.2.13
High-speed transfer mode start | READ[1/2] v Section 9.2.28
High-speed transfer mode stop | READ[1]2]:ABORt v Section 9.2.29

3-7

Section 3 Specifications

Table 3-6 Light source

Function Command HP | SCPI | Reference
Modulation frequency SOURce[1|2]:AM[:INTerval]:FREQuency v Section 9.3.1
Attenuation SOURce[1/2]:POWer: AT Tenuation v Section 9.3.3
Optical output SOURce[1/2]:POWer:STATe v Section 9.3.4
Wavelength SOURce[1/2]:POWer:WAVelength v Section 9.3.5
Unit of wavelength SOURce[1/2]:POWer:WAVelength:UNIT v Section 9.3.6
Measurement condition SOURce[1|2]:MEMory[1|2]:COPY[:NAME] v Section 9.3.2

In the portion described as [1/2], enter the channel number into which the target
unitisinserted (1 or 2). Thebrackets([]) are not required.

When you send the LIGHT SOURCE COMMAND to OPTICAL SENSOR, the
command error occurs.

At the opposite case (send the OPTICAL SENSOR COMMAND to LIGHT
SOURCE), the command error occurs too.

3-8.

Section 4 Initial Setting

Initialization of the GPIB interface system isdevided into threelevels. Atlevel 1,
"businitialization" is performed to place the system busin theidle state. At level
2, "message exchange initialization" is performed to enable devices to receive
program messages. At level 3, "device initialization" is performed to initialize
device-dependent functions.

At these three initialization levels, preparations are made for starting devices.

4.1
4.2

4.3
4.4

Initialization of Bus by IFC Statementcccccceviiiiineeeinns 4-3
Initialization of Message Exchange by DCL and

SDC BUS COMMANGSooiiiieiiiiieiiiie e 4-5
Initialization of Devices by [RST Commandcccecouee. 4-7
Device States at POWEr-ONccccoviiieiiiiiiiieeieee e 4-8
4.4.1 Items not changes at Power-ONcccoccviveeeriiinnnn. 4-9
4.4.2 Itemsrelated to PSC flagccoeveeieiiiiiiiiiiciiec e 4-9
4.4.3 Items that change at POwer-ONcccccoveiviieeninneen. 4-9

4-1

Section 4 Initial Setting
|EEE 488.2 specifies the initialization of the GPIB system as described in the
Table 4-1.
Table 4-1
Level Initialization type Overview Combination and priority of levels
This level may be combined with
Interface functions of all devices connect- | other levels. However, initializa-
1 Businitialization ed to the bus are initidlized by an IFC | tion at level 1 must be performed
message from a controller. before initialization at other lev-
els.
Message exchange is initidized and the
function of reporting completion of opera-| This level may be combined
tion to the controller is disabled. Thisini-| withother levels. However, ini-
2 Meisz?aleg;;i;inge tialization can be ferformed either for all | tialization at level 2 must be per-
devices on the GPIB using GPIB bus com- | formed before initialization at
mand DCL, or only for the specified | level 3.
devices using a GPIB bus command SDC.
Only the specified devices on the GPIB | This level may be combined with
o are initialized to the known states with an | other levels. However, initializa-
3 Deviceinitialization . . .
[RST command irrespective of the past | tion at level 3 must be performed
use state. after initidization at levels 1 and 3.

When controlled from a controller viathe RS-232C interface port, the MT9810B
can usethe "deviceinitiaization” function (level 3). However, it cannot use "bus
initialization" (level 1) and "message exchangeinitiaization" (level 2) functions.
When controlled from a controller viaa GPIB interface bus, the MT9810B can
use all the above initialization functions (levels 1 to 3).

4-2

IFC

4.1 Initialization of Bus by IFC Statement
(1) Format
IFC A select-code
(2) Explanation
Thisfunction can be used when the MT9810B is controlled from a controller
viaa GPIB interface bus.
On the GPIB corresponding to the specified select code, the IFC lineis acti-
vated for about 100 ps (as electrically set at the low level). When IFC is
executed, interface functions of all devices connected to the GPIB bus line
corresponding to the specified select code are initialized. Only the system
controller can send this command.
"Initialization of interface functions' refersto the processing in which con-
troller-set device interface functions (talker, listener, etc.) are reset to their
initial states. Functions marked with the check marks (V) in the following
table areinitialized. The function marked with atriangle (A) isinitialized
partialy.
Table 4-2

No Function Symbol Initialization by IFC

1 Source handshake SH v

2 Acceptor handshake AH v

3 Talker or extended talker TorTE v

4 Listener or extended listener LorlLT v

5 Service regquest SR A

6 Remote/local RL

7 Parallel/poll PP

8 Device clear DC

9 Device trigger DT

10 Controller C v

If the IFC statement is True (the IFC lineis set at the low level through execution
of the IFC statement), initialization is not performed at levels 2 and 3. Therefore,

device operating states are not affected.

43

Section 4 Initial Setting

The examples of device states set by the IFC statement are shown in the Table 4-3.

Table 4-3

Item

Device state

Talker/listener

All talkers and listeners are set in the idle state (TIDS, LIDS) within 100 ps.

Controller

If the controller is not active (SACS: System control ACtive State), it enters the
idle state, or CIDS, (Controller IDle State) within 100 ps.

Return of control right

If the system controller (the first device on the GPIB which is used as a controller)

has granted the control right to another device when IFC is executed, the control

right is returned to the system controller. Generaly, pressing the RESET key on

the system controller allows an IFC message to be output from the system con-
troller.

Devices issuing service
request

The state in which an SRQ message is issued by a device (the SRQ line is set at
the LOW level by the device) is not canceled, but the state in which all devices on
the system bus are placed in the seria poll mode by the controller is canceled.

Devices in remote state

For the devices currently in the remote state, the remote state is not canceled by
the IFC message.

4-4

DCL

4.2 Initialization of Message Exchange by DCL and
SDC Bus Commands

@)

)

®)

(4)

Format
DCL A select-code [primary-address] [secondary-address]

Explanation

This function can be used when the MT9810B is controlled by a controller
viathe GPIB interface bus.

This statement initializes message exchange for all device on the GPIB cor-
responding to the specified select code or only for the specified devices.
The purpose of message exchange is to allow the controller to send new
commands when the controller cannot control message-exchange-related
parts inside the devices due to execution of programs although it is not nec-
essary to change the panel settings.

When only a select code is specified

Message exchange isinitialized for all the devices on the GPIB correspond-
ing to the specified select code. DCL issuesa DCL (Device Clear) bus com-
mand to the GPIB.

When an address is also specified

Message exchangeisinitialized only for the specified device. Listenerson
the GPIB corresponding to the specified select code are canceled, only the
specified deviceis set asalistener, and an SDC (Selected Device Clear) bus
command isissued.

45

Section 4 Initial Setting

(5) Items subject to initialization of message exchange

Table 4-4

Item

Device state

Input buffer and output queue

The settings are cleared.

Syntax analysis, execution control,
and response generation parts

The functions are reset.

Device commands including CRST

All commands interfering with execution of these commands are cleared.

Paired parameter/program
message

All commands and queries of which execution has been suspended due to paired
parameters are discarded.

COPC command processing

The specified deviceis set in the OCIS (Operating Complete Command I dle State).
The operation complete bit cannot be set in the standard event status register.

@Section 7

COPC? query processing

The specified device is set in the OQIS (Operating Complete Query Idle State).
The operation complete bit 1 cannot be set in the output queue. The MAV (Mes-
sage Available) bit is cleared.

@Section 7

Automatic system configura-
tion

CADD and [DLF common commands are invalidated. (The MT9810B does not
support these commands.)

Device function

All parts related to message exchange are set in the idle state. The device waits for
amessage from the controller.

The following operations using DCL are prohibited.

(8 Changing the current device settings and stored data

(b) Interrupting front panel 1/0

(c) Changing status bits other than the MAV bit when clearing the output
queue

Affecting or interrupting the device operation currently being per-
formed

(d)

(6) Orders of issuing GPIB bus commands using DCL statements
Orders of issuing GPIB bus commands using DCL, SDC statements are

summarized in the Table 4-5.

Table 4-5
Statement Bus command issue order (ATN line: Low level) Data (ATN line: High level)
DClLselect-code UNL, DCL _—
DCL device-number UNL, LISTEN address, [secondary-address], SDC

46

[RST

4.3 Initialization of Devices by [RST Command

(1) Format
[RST

(2) Explanation
The [RST (Reset) command is one of the |EEE 488.2 common command,
which is used to reset a specified device at level 3.
Generally, devices are set in various states using device-dependent com-
mands (device messages). Among these commands, the CRST command is
used to reproduce a known state of adevice. Completion of device operation
isinvalidated like level 2.

(3) Specification of device number in WRITE statement
The device at the specified addressisinitialized at level 3.

(4) Items subject to device initialization

Table 4-6

Item

Device state

Device-dependent functions
and states

The specified device is set in aknown state irrespective of its history. (Refer to the
lists on the following pages.)

[OPC command processing

The specified device is set in the OCIS (Operating Complete Command Idle State).
The operation complete bit cannot be set in the standard event status register.

[@Section 7

[OPC? query processing

The specified device is set in the OQIS (Operating Complete Query Idle State).
The operation complete bit 1 cannot be set in the output queue. The MAV (Mes-
sageAvailable) bit is cleared.

@Section 7

Macro command

Macro operation is disabled, and sets the state in which macro commands cannot
be accepted. The returnes the macro definitions to the designer's state.

NOTES:
[RST command does not affect the following items:
. |EEE 488.1 interface state
. Device address
. Output queue
. Service request enable register
Standard event status enable register
. Power-on-status-clear flag setting
. Cadlibration data affecting device standard
. RS-232C interface condition

O N U WN PR

4-7

Section 4 Initial Setting

4.4 Device States at Power-ON

When the power is turned on:
(1) TheMT9810B isrestored to the last Power-OFF state.

« Input buffer

(2) Theinput buffer and output queue are cleared.

(3) Syntax analysis, execution control, and response generation parts are reset.
(4) Thedeviceissetinthe OCIS.
(5) Thedeviceissetinthe OQIS.
(6) The MT9810B does not support a C(PSC command. Therefore, the standard
event status register and standard event status enable register are cleared.

Events are recorded after being cleared.

States (2) to (5) are set except when the power is turned on. The following
diagram describes these states.

ponlidcas

« Output queue

Clear

Operation

Complete

part
Execution

» Syntax analysis

control part

Response

generation part

ponldcas

pon

~

Reset

Operation
Complete
Command

Idle State

48

4.4 Device States at Power-ON

4.4.1 Items not changes at Power-ON
(1) Address
(2) Associating calibration data
(3) Dataand states are changed by the responses to the following common query

commands.

ODN? v Refer to the Section 7 "Common Commands'
[OPT? cviene Refer to the Section 7 "Common Commands’
PSC? ..o Not supported by the MT9810B
(PUD?.....c.c... Not supported by the MT9810B
[RDT?..ccoeuee. Not supported by the MT9810B

4.4.2 Items related to PSC flag

When the PSC (Power-ON status clear) flag is False, the service request enable
register, standard event status enable register, and parallel poll enable register are
not affected. Refer to the Section 8.3 "Enabling the SRQ" for the service request
enable register, and refer to the Section 8.4 " Standard Event Status Register” for
the standard event status enable register

When the PSC flag is Low level (True) or the CTPSC command has not been ex-
ecuted, the above registers are cleared.

NOTE:

The PSC command is not supported by the MT9810B.

4.4.3 Items that change at Power-ON

@
@
©)
4

©)

(6)
@)

Current device function state

Status information

*SAV/*RCL register (Not supported by the MT9810B)

Macro definition made with a*DDT command (Not supported by the
MT9810B)

Macro definition made with a *DMC command (Not supported by the
MT9810B)

Macro enabled with an * EMC command (Not supported by the MT9810B)

Address received with a* PCB command (Not supported by the MT9810B)

49

Section 4 Initial Setting

4-10.

Section 5 Listener Input Formats

Device messages are data messages transferred between the controller and devices,
which can be classified into program messages and response messages. This section
explains the formats of the program messages received by listeners.

5.1 Summary of Listener Input Program Message

Syntactical NOtationc.cccciiiiiiiiiii e 5-3
5.1.1 Separator, Terminator, and Space Before Header 5-3
5.1.2 General Format of Program Command Message 5-5
5.1.3 General Format of Query Message 5-6
5.2 Program Message Functional Elementscccccocveeniiieenne 5-7
5.2.1 <TERMINATED PROGRAM MESSAGE> 5-7
5.2.2 <PROGRAM MESSAGE TERMINATOR>..........cc..... 5-8
5.2.3 <WhIte SPACE™iiiiiiie et 5-9
5.2.4 <PROGRAM MESSAGE>ccccoiiiiiiiiiiiii e 5-9
5.2.5 <PROGRAM MESSAGE UNIT SEPARATOR> 5-10
5.2.6 <PROGRAM MESSAGE UNIT>cccoviiiiiieiiienieee 5-10

5.2.7 <COMMAND MESSAGE UNIT>/
<QUERY MESSAGE UNIT> ..cccoiiiiiiiiiee e
5.2.8 <COMMAND PROGRAM HEADER>ccccceeiiens
5.2.9 <QUERY PROGRAM HEADER>cccccoviiveiiinenns
5.2.10 <PROGRAM HEADER SEPARATOR>ccccceeuene
5.2.11 <PROGRAM DATA SEPARATOR>ccccvvvviiiiirenns
5.3 Program Data Formatccocveeiiniiiieneeiniieeeeene
5.3.1 <CHARACTER PROGRAM DATA>cccccovvviniirennns
5.3.2 <DECIMAL NUMERIC PROGRAM DATA>
5.3.3 <SUFFIX PROGRAM DATA>oociiiiiiiiiieiiiee e

5.3.4 <NON-DECIMAL NUMERIC PROGRAM DATA> 5-25
5.3.5 <STRING PROGRAM DATA>ccviiiiiiiiiiiciiiees 5-26
5.3.6 <ARBITRARY BLOCK PROGRAM DATA> 5-27
5.3.7 <EXPRESSION PROGRAM DATA>ccccccoviiinnenne 5-31

5-1

Section 5 Listener Input Formats

A program message is a sequence of program message units. Each unitisapro-
gram command or query.

The following diagram shows how to set the wavel ength and measurement range
of the power meter unit inserted into Channel 1 to 1550 nm and —10 dBm. Asit
explained in the diagram, two program message units SENSE1:POWER:
WAVELENGTH 1550NM and SENSE1:POWER:RANGE:UPPER —10DBM
are connected with the program message unit separator and sent to the device
from the controller as one program message.

<TERMINATED PROGRAM MESSAGE>
A

r N\
Listener address specification <PROGRAM MESSAGE> <PROGRAM MESSAGE TERMINATOR>
Address15 —_—— A A
Listener /I Talker
Call Send

(0, 15, "SENSE1: POWER: WAVELENGTH 1550NM ; SENSE1: POWER: RANGE: UPPER-10DBM", NLend
i

(device) \I

<PROGRAM MESSAGE UNIT> <PROGRAM MESSAGE UNIT SEPARATOR> <PROGRAM MESSAGE UNIT>

/ ‘\ ~_| (controller)

NLend

sp
SENSE1: POWER: WAVELENGTH__ 1550NM sp; SENSE1: POWER: RANGE: UPPER _ -10DBM / \

<COMMAND PROGRAM HEADER> <PROGRAM DATA> <COMMAND PROGRAM HEADER> <PROGRAM DATA>

SENSE1: POWER: WAVELENGTH 1550N M SENSE1: POWER: RANGE: UPPER -10 DBM

<white space> ; <white space> NL

<program mnemonic>

<PROGRAM HEADER SEPARATOR> <PROGRAM HEADER SEPARATOR>

SENSE1: POWER: WAVELENGTH 1550 N M

™ —

<white space> <decimal numeric program data> <suffix program data> <suffix program data> <white space>

A program message is a sequence of functional elements, the minimum units that
can represent functions. In the above figure, functional elements are indicated by
capital characters with them enclosed in < >. Functional elements are further
classified into coding elements which are indicated by lowercase characters with
them enclosed in < >.

The chart indicating the route of selection of functional elementsis called afunc-
tional syntactical chart. The chart indicating the route of selection of coding ele-
mentsis called acoding syntactical chart. Refer to the Section 5.1 "Summary of
Listener Input Program Message Syntactical Notation" for the program message
formats using these functional and coding syntactical charts.

Coding elementsindicate coding of the actual buswhich isrequired to send func-
tional element data byte to adevice. Upon receipt of afunctional element data
byte, the listener checks whether individual elements follow the coding syntax
rules. If these elements do not follow the rules, the listener causes a command
error without regarding the elements as functional elements.

5-2

5.1 Summary of Listener Input Program Message Syntactical Notation

5.1 Summary of Listener Input Program Message Syn-
tactical Notation

This section gives ageneral description of program message functional units and
program data formats. Refer to the Section 5.2 "Program Message Functional
Elements" for program message functional units and the Section 5.3 "Program
Data Format" for dataformats. (Compound commands and common commands
are excluded.)

5.1.1 Separator, Terminator, and Space Before Header

(1) <PROGRAM MESSAGE UNIT SEPARATOR>
Link two or more <PROGRAM MESSAGE UNIT> elements using zero or
more spaces and a semicolon.

<Example> The general format for linking two <PROGRAM MESSAGE UNIT> elements

<PROGRAM <PROGRAM

<white space> f\
i MESSAGE UNIT> j \L P I NG 1 MESSAGE UNIT> f

(2) <PROGRAM DATA SEPARATOR>
Separate two or more contiguous pieces of <PROGRAM DATA> using a
comma.in between zero or more spaces.

<Example> The general format for separating two pieces of <PROGRAM DATA>

— <PROGRAM DATA> < <white space> 7 @ < <white space> [~ <PROGRAM DATA> —*

(3) <PROGRAM HEADER SEPARATOR>
Separate <PROGRAM HEADER> and <PROGRAM DATA> using one
Space and zero or more spaces.

<Example> The general format of single command <PROGRAM HEADER>

<PROGRAM HEADER> <white space> ~ <white space> 7 <PROGRAM DATA>

5-3

Section 5 Listener Input Formats

(4) <PROGRAM MESSAGE TERMINATOR>
Add zero or more spaces and one of NL, EOI, and a combination of NL and
EQI at the end of a<PROGRAM MESSAGE>.

<General format>

<white space>

(5) Space before header
Zero or more spaces can precede a<PROGRAM HEADER>.

<General format>

l <white space> l

54

5.1 Summary of Listener Input Program Message Syntactical Notation

5.1.2 General Format of Program Command Message

(1) Message without data specification

O <HR>

HR: COMMAND PROGRAM HEADER

(2) Message with integer data

O—— <HR> @ I NR1

H{

NR1: Integer

(3) Message with real number

O——— <HR> @ I NR2

H{

NR2: Real number

(4) Message with fixed or arbitrary character string data (data length
<12 characters)

R I@ (

character

ﬁu

(5) Message with multiple pieces of program data (starts with NR1)

()
N

%

O— <HR> \L @ NR1 or NR2 O NR1 or NR2

Section 5 Listener Input Formats

(6) Character-only message that can use all ASCII 7-bits

<inserted">
non single
quote char
O— <HRrR> —
‘ <inserted">
I non single
quote char
<inserted > Single ASCII code representing avalue 27
non-single quote char: Single ASCII code representing a value other than
27
<inserted ">: Single ASCII code representing a value 22
non-single quote char: Single ASCII code representing a value other than
22

5.1.3 General Format of Query Message

Add a question mark (?) at the end of command <PROGRAM HEADER> for a
query <PROGRAM HEADER>.

(1) Message without query data specification

O <HR>

(2) Message with query data specification

O— <HR> @ NR1 O NR2 —

5-6

5.2 Program Message Functional Elements

5.2 Program Message Functional Elements

A device accepts a program message by detecting the terminator added at the end
of the program message. The following pages describe the functional elements of

5.2.1 <TERMINATED PROGRAM MESSAGE>

the program message.

<TERMINATED PROGRAM MESSAGE> is defined as follows:

<PROGRAM MESSAGE>

O

Referto 5.2.4

<PROGRAM

MESSAGE TERMINATOR>
Refer t0 5.2.2

<TERMINATED PROGRAM MESSAGE> is a data message containing all the
necessary functional elements to be sent from a controller to a device.

To complete the transfer of <PROGRAM MESSAGE>, <PROGRAM MES-
SAGE TERMINATOR> is added at the end of <PROGRAM MESSAGE>.

5-7

Section 5 Listener Input Formats

5.2.2 <PROGRAM MESSAGE TERMINATOR>

<PROGRAM MESSAGE TERMINATOR> is defined as follows:

OEND

<white space> ‘ m

NL [JEND
Referto 5.2.3 I ‘ U
@

<PROGRAM MESSAGE TERMINATOR> terminates a sequence of one or

more fixed-length <PROGRAM MESSAGE UNIT> elements.

NL Defined as a single ASCII code byte OA (decimal 10), which is an
ASCII control character LF (Line Feed) that movesthe printing position
down oneline. Becausethe printing starts at anew line, itisalso called
NL (New Line).

END Setsthe EOI line, one of GPIB control buses, at the LOW level (True),
generating an EOI signal.

NOTE:
The CR code is used to return the printing position to the first character
position on the same line; however, most listeners ignore this cord.
Some products available on the market uses CR-LF code, so most con-
trollers are so designed that CR and LF codes are issued in succession.

(O
()

5-8

5.2 Program Message Functional Elements

5.2.3 <white space>

<white space> is defined as follows:

[<white space j

character>

<white space character> is one of single ASCII code bytes 00 to 09 and OB to 20
(decimal values 0 to 9 and 11 to 32).

Thisrangeincludes ASCII control codes and space signals and excepts NL. The
device does not regard these codes as ASCI| control codes but the spaces and it
skips those cords.

5.2.4 <PROGRAM MESSAGE>
<PROGRAM MESSAGE> is defined as follows:

<PROGRAM MESSAGE
UNIT SEPARATOR>
Refer to 5.2.5

<PROGRAM MESSAGE UNIT>

I Refer to 5.2.6 I

<PROGRAM MESSAGE> is zero, a<PROGRAM MESSAGE UNIT> element,
or a sequence of <PROGRAM MESSAGE UNIT> elements. A <PROGRAM
MESSAGE UNIT> element is a programming command or data which is sent
from a controller to adevice.

A <PROGRAM MESSAGE UNIT SEPARATOR> element is used to separate
two or more <PROGRAM MESSAGE UNIT> elements.

5-9

Section 5 Listener Input Formats

5.2.5 <PROGRAM MESSAGE UNIT SEPARATOR>

<PROGRAM MESSAGE UNIT SEPARATOR> is defined as follows:

1

<white space> j @

<white space> is defined as follows:

[<white space character> j

Refer t0 5.2.3

<PROGRAM MESSAGE UNIT SEPARATOR> divides a sequence of <PRO-
GRAM MESSAGE UNIT> elements within the range of <PROGRAM MES-
SAGE>.

A deviceinterprets a semi-colon (;) asthe separator between <PROGRAM MES-
SAGE UNIT> elements. Accordingly, <white space character> placed before
and after the semi-colon (;) isignored, although <white space character> im-
proves program readability. <white space> following a semi-colon (;) is aso
used as a <white space> for the next <PROGRAM HEADER>.

[[= section5.2.8

5.2.6 <PROGRAM MESSAGE UNIT>

<PROGRAM MESSAGE UNIT> is defined as follows:

<COMMAND MESSAGE UNIT>

f Referto 5.2.7 1

L <QUERY MESSAGE UNIT> j

Refer to 5.2.7

<PROGRAM MESSAGE UNIT> is a single command message received by a
device.

It consists of <COMMAND MESSAGE UNIT> or <QUERY MESSAGE
UNIT>, which isasingle query message.

Refer to the Section 5.2.7 "<COMMAND MESSAGE UNIT>/<QUERY MES-
SAGE UNIT>" for more details.

5-10

5.2 Program Message Functional Elements

5.2.7 <COMMAND MESSAGE UNIT>/<QUERY MESSAGE UNIT>

<COMMAND
PROGRAM HEADER>
Refert0 5.2.8

<QUERY
PROGRAM HEADER>

Referto 5.2.9

<COMMAND MESSAGE UNIT> is defined as follows:

<PROGRAM
DATA SEPARATOR>
Refer to 5.2.11

<PROGRAM
HEADER SEPARATOR>
Refer to 5.2.10

<PROGRAM DATA> ———>*>

<QUERY MESSAGE UNIT> is defined asfollows:

<PROGRAM
DATA SEPARATOR>
Refer to 5.2.11

<PROGRAM
HEADER SEPARATOR>
Refer to 5.2.10

<PROGRAM DATA> ———™*

When a <PROGRAM HEADER> of <COMMAND MESSAGE UNIT> or
<QUERY MESSAGE UNIT> isfollowed by <PROGRAM DATA>, aspaceis
inserted between these unit. A <PROGRAM HEADER> indicates the applica-
tion, function, and operation of the program. If a<PROGRAM HEADER> isnot
followed by <PROGRAM DATA>, the <PROGRAM HEADER> solely indi-
cates the application, function, and operation to be performed in the device.

Among <PROGRAM HEADER> elements, <COMMAND PROGRAM
HEADER> is a control command issued from a controller to a device and
<QUERY PROGRAM HEADER> isaquery command that isissued from acon-
troller to adevice in advance so that the controller can receive responses from the
device. <QUERY PROGRAM HEADER> aways ends with a query indicator,
or aquestion mark (7).

5-11

Section 5 Listener Input Formats

5.2.8 <COMMAND PROGRAM HEADER>

<COMMAND PROGRAM HEADER> is defined below.
Each header can be followed by <white space>.

<white space>

Refer to 5.2.3

J

<simple command

program header>

Refer to (1)

<compound command

program header>

Refer to (2)

<common command

program header>

Refer to (3)

(1) <simple command program header> is defined as follows:

Refer to (4)

<program mnemonic>

(2) <compound command program header> is defined as follows:

(

<program mnemonic>

Y.

<program mnemonic>

Refer to (4)

@

IU

Refer to (4)

(3) <common command program header> is defined as follows:

(o)
—/

Refer to (4)

<program mnemonic>

(4) <program mnemonic> is defined as follows:

<upper/lower

<upper/lower

case alpha>

case alpha>

()
N

-
L

<digit>

-
B

5-12

5.2 Program Message Functional Elements

<COMMAND PROGRAM HEADER>

<program mnemonic>

<COMMAND PROGRAM HEADER> indicates the application, function, and
operation of the program data to be executed by the device usually followed by
<PROGRAM DATA>. Whenitis not followed by <PROGRAM DATA>, the
header solely indicates the application, function, and operation to be performed in
the device.

The meanings of an application, function, or operation is represented by <pro-
gram mnemonic> in ASCII cord, which iswidely called amnemonic. Mnemon-
icsand the <COMMAND PROGRAM HEADER> defined in (1) to (3) above are
explained below.

A mnemonic begins with an uppercase or lowercase character, which is followed
by an arbitrary combination of characters such as uppercase characters (A to Z) or
lowercase characters (ato z), underline (L), and numeric characters (0t0 9). A
mnemonic can contain a maximum of 12 characters; however, most mnemonics
contain 3 to 4 characters. (No space isinserted between characters.)
<upper/lower case dpha> One of ASCII code bytes 41 to 5A and 61 to 7A
(decimal values 65 to 90 and 97 to 122 = uppercase
characters A to Z and lowercase characters ato z).
The device can accept a header irrespective of
whether it is represented by uppercase or lowercase

characters.

<digit> One of ASCII code bytes 30 to 39 (decimal values
48 to 57 = characters0t0 9).

Q) An ASCII codebyte, i.e., ASCII code byte 5F (deci-

mal value 95 = underline).

<simple command program header>

The above rules for <program mnemonic> applies.

<compound command program header>

<compound command program header> is a <COMMAND PROGRAM
HEADER> that executes acompound function. <program mnemonic> is always
preceded by a colon (:) to separate it from <compound command program
header>. When only one <compound command program header> is used, the
succeeding colon (:) may be omitted.
Function:
On acomplex device, adevice command set is organized logically by
providing a compound function instead of limiting the number of
unique headers. A hierarchical command structure can be handled ef-
fectively.

<common command program header>

An asterisk (O is aways added before <program mnemonic> of <common com-
mand program header>. "Common" means that this command is a program com-
mand which commonly used for other | EEE 488.2-ready measuring instruments
connected to the bus.

5-13

Section 5 Listener Input Formats

5.2.9 <QUERY PROGRAM HEADER>

<QUERY PROGRAM HEADER> is defined as follows:
<white space> may be written before each header.

<white space>

<simple query

I Refer t0 5.2.3

J

——| program header> [——

program header> [—
Refer to (1)

<compound query

Refer to (2)

<common query

——| program header> [—————

Refer to (3)

(1) <simple query program header> is defined as follows:

<program mnemonic>
Refer to (4) 0of 5.2.8

(2)
_/

(2) <compound query program header> is defined as follows:

[<program mnemonic>

Y.

()
M Refer to (4) of 5.2.8

IU

<program mnemonic>
Refer to (4) of 5.2.8

(3) <common query program header> is defined as follows:

(o)
N

<QUERY PROGRAM HEADER>

<program mnemonic>
Refer to (4) of 5.2.8

(2)
N

<QUERY PROGRAM HEADER> is a query command which is sent from a
controller to adevice in advance so that the controller can receive response mes-
sagesfrom the device. This header always endswith a query indicator, or aques-
tion mark (?). Itisexplained below using examples of programs.

The format of <QUERY PROGRAM HEADER> is the same as that of <COM-
MAND PROGRAM HEADER> with the exception that a query indicator, or a
question mark (?), isadded at the end. Refer to the Section 5.2.8 "<COMMAND
PROGRAM HEADER>."

5-14

5.2 Program Message Functional Elements

5.2.10 <PROGRAM HEADER SEPARATOR>

<PROGRAM HEADER SEPARATOR> is defined as follows:

<white space>

Refer to 5.2.3

<PROGRAM HEADER SEPARATOR> is used as the separator between
<COMMAND PROGRAM HEADER> or <QUERY PROGRAM HEADER>
and <PROGRAM DATA>.

When there are two or more <white space character> elements between the
<PROGRAM HEADER> and the <PROGRAM DATA>, the first <white space
character> is interpreted as a separator and the remaining <white space charac-
ter>isignored, although <white space character> improves program readability.
At least one header separator must exist between the header and the data. One
separator indicates the end of the <PROGRAM HEADER> aswell as the begin-
ning of the <PROGRAM DATA>.

5.2.11 <PROGRAM DATA SEPARATOR>

<white space>
Refer to 5.2.3

<PROGRAM DATA SEPARATOR> is defined as follows:

<white space>

L

)
f \J I Refrt05.23 7—’

<PROGRAM DATA SEPARATOR> is used to separate the parameters, when
<COMMAND PROGRAM HEADER> or <QUERY PROGRAM HEADER>
has many parameters.

When this data separator is used, acommais mandatory but <white space charac-
ter> can be omissible. The <white space character> before a comma and the
<white space character> after acomma are ignored, although <white space char-
acter> improves program readability.

5-15

Section 5 Listener Input Formats

5.3 Program Data Format

This section explains the format of the <PROGRAM DATA> shown in the func-
tional syntactical chartsin the Section 5.2.7 "<COMMAND MESSAGE UNIT>/
<QUERY MESSAGE UNIT>", which isone of terminated program message for-

mats.

The functional element of the <PROGRAM DATA> is used to transfer various
types of parameters related to the <PROGRAM HEADER>. <PROGRAM
DATA> types are shown below. The MT9810B accepts the program data shown
in the hollow squares surrounded by a shade. For the program data not supported

by the MT9810B, read this section just for reference.

<CHARACTER
PROGRAM DATA>

<DICIMAL NUMERIC
PROGRAM DATA>
Refer t0 5.3.2

<SUFFIX
PROGRAM DATA>
Refer to 5.3.3

<NON-DECIMAL
NUMERIC
PROGRAM DATA>

<STRING
PROGRAM DATA>

<ARBITRARY
BLOCK
PROGRAM DATA>

<EXPRESSION

PROGRAM DATA>

5-16

5.3 Program Data Format

5.3.1 <CHARACTER PROGRAM DATA>

<upper/lower

case alpha>

The functional element of the <CHARACTER PROGRAM DATA> is used to
perform remote control by transferring short alphabetic or alphanumeric data. It
is defined as follows:

<program mnemonic>

Details on character data are the same as those on <program mnemonics>. The
numeric data has been focused as control data, however, the program data can
a so be used to perform control. A coding syntactical chart is as follows:

<upper/lower

case alpha>

'
N

<digit>

The data always begins with an uppercase or lowercase character, which is fol-

lowed by an arbitrary combination of characters such as uppercase characters (A

to Z) or lowercase characters (ato z), underline (L), and numeric characters (0 to

9). Since combinations of aphanumeric characters are used as mnemonic-like

symbols, the maximum data length is 12 characters.

<upper/lower case dpha> One of ASCII code bytes 41 to 5A and 61 to 7A
(decimal values 65 to 90 and 97 to 122 = uppercase
characters A to Z and lowercase characters ato z).
The device can accept a header irrespective of
whether it is represented by uppercase or lowercase

characters.

<digit> One of ASCII code bytes 30 to 39 (decimal values
48 to 57 = characters 0 to 9).

(@) A single ASCII code byte, i.e., ASCII code byte 5F

(decimal value 95 = underline).

Therefore, <CHARACTER PROGRAM DATA> is <PROGRAM DATA> used
to transfer relatively short mnemonic-type a phanumeric codes.

5-17

Section 5 Listener Input Formats

5.3.2 <DECIMAL NUMERIC PROGRAM DATA>

<DECIMAL NUMERIC PROGRAM DATA> is<PROGRAM DATA> used to
transfer numeric constants represented in decimal notation. There are three types
of decimal numeric representation: integer, fixed-point, and floating-point.
These three types of numerics represent decimal numeric program data, which
can contain spaces, flexibly (NRf: flexible numeric representation). These nu-
merics are defined as follows:

—— <mantissa> \L <white space> I \L <exponent> 7—‘

<mantissa> is defined as follows:

<optional

<digit>

digits>

L [<optional
<digit>
digits>

<exponent> is defined as follows:

m <white
Ele <digit>
U I space>

<white space> and <optional digits> are defined as follows:

[<white space] diai
+ <digit>

character>

refer to the Section 5.2.3 "<white space>" for <white space>, and refer to the
Section 5.3.1 "<CHARACTER PROGRAM DATA>" for <digit>.

5-18

5.3 Program Data Format

The following pages describe coding syntactical charts of decimal numeric pro-
gram data with respect to integer, fixed-point, and floating-point notations re-
spectively.

Note that the following processing is performed during transfer of any type of

numeric representation:

Rounding of numeric element When a device receives a <DECIMAL NU-
MERIC PROGRAM DATA> element having
too many digitsto handle, it ignores the sign of
the element value and rounds it off.

Data outside the range If the <DECIMAL NUMERIC PROGRAM
DATA> element value is outside the range per-
mitted in relation to the program header, an ex-
ecution error is reported.

(1) Integer NR1 transfer

A decimal value not including a decimal point and exponent, i.e., an integer
(NR1) in areal number, istransferred.

<white

<digit>
I space> [

0 (s) may be added at the beginning - 005, +000045
A space (+ or —) must not be inserted between a sign and a numeric. - +5, +A5 (%)
Spaces may be added after a numeric. - +5AAA

The + sign may be omitted. - +5,5
Commas must not be used to indicate decimal places. - 1,234,567 (x)

5-19

Section 5 Listener Input Formats

(2) Fixed-point NR2 transfer
A decima number having digits below the decimal point, i.e., an integer and
area number (NR2) except an exponent, is transferred.
The syntactical chart shows an integer part and adecimal point and adecimal
part.

~gg— (Integer part) - - - —a— (Decimal part) =
Decimal point

]

<digit> <digit>

<white space

character>

\O] @

<digit> . <digit>
/ / L J
/ /
/ I

/
/ ‘~-The decimal point

. !
cannot be omitted. /_ _The nymeric in the decimal

part may be omitted. part may be omitted.

/
‘=—The numeric in the integer

e Aninteger representation is applied to the integer part.

A space must not be inserted between a numeric and a decimal point. - +753 A.123 (x)
e Spaces may be added after the numeric in the decimal part. - +753.123AAAA
¢ The decimal point need not follow a numeric. - .05

» A sign may be written before a decimal point. - +.05,—05

* A numeric may end with a decimal point. - 12.

5-20

5.3 Program Data Format

(3) Floating-point NR3 transfer
A decimal numeric valve having an exponent, i.e., areal number (NR3) rep-
resented in floating-point notation, is transferred. The syntactical chart con-
sists of a mantissa part and an exponent part. The exponent part is repre-
sented in integer and floating-point notation to indicate precision of the nu-
meric. The exponent part beginswith E. On theright of E isanumber to the
power of 10.

(Mantissa part) -

j

<digit> <digit>

<white space

To ¢
character>

)

<digit> <digit>

O O

L

(Exponent part) -

m [<white space .
Ele <digit>
U I character>

E indicates power of 10. It indicates the beginning of the exponent part.
E may be either an uppercase or lowercase character.

A space may be written before or after E/e.

If the sign is +, it may be omitted in mantissa and exponent parts.

The numeric in the exponent part cannot be omitted.

1.234E+12, 1.234e+12
1234 AEA+12
+1.234E+4, 1.234E4
—1E2, -E2 (x), —E2 (%)

I

I

!

!

5-21

Section 5 Listener Input Formats

5.3.3 <SUFFIX PROGRAM DATA>

<SUFFIX PROGRAM DATA> follows <DECIMAL NUMERIC PROGRAM
DATA> (integer NR1, fixed-point NR2, or floating-point NR3) described in the
Section 5.3.2 "<DECIMAL NUMERIC PROGRAM DATA>." TheNR1, NR2,
and NR3 may be followed by a suffix.

] NR1

NR2

<SUFFIX
PROGRAM —%
DATA>

] NR3

- NR field -

A suffix isadded at the end of decimal numeric program data only when the data
requires a unit of measure. It isacombination of a suffix unit and a suffix multi-
plier. The syntactical chart is shown below. Bold-line routes are used frequently.

20N
o)
=

<suffix <suffix -
. <digit>

mult> unit>
<white
space>

<suffix .

) - <digit>
unit>

e A suffix multiplier is represented by an uppercase or lowercase character.
For example, 1E3 Hz is represented by 1 kHz assuming 1E3 = k.

e A suffix unit is represented by an uppercase or |lowercase character.

* Placing E at the beginning of <SUFFIX PROGRAM DATA> is prohibited because it may be confused with the
E used for floating-point decimal numerics.

5-22

5.3 Program Data Format

Suffix multipliers and units are listed in the Table 5-1.
(1) Suffix multipliers

Table 5-1 Suffix multipliers

Multiplier Mnemonic Name
1E18 EX EXA
1E15 PE PETA
1E12 T TERA

1E9 G GIGA
1E6 MA (NOTE) MEGA
1E3 K KILO
1E-3 M (NOTE) MILLI
1E-6 u MICRO
1E-9 N NANO
1E-12 P PICO
1E-15 F FEMTO
1E-18 A ATTO

NOTE:

According to convention, Hz to the sixth power of 10° is MHz (mega-
hertz) and OHM to the six power of 10°is MOHM (megaohm). These
are not listed in the above table, but listed in the Table 5-2 "Suffix

units."

(2) Relative units (dB)

Decibel relativeto 1 pVv
Decibel relativeto 1 pwW

Decibel relativeto 1 mw DBMW
For historical reasons, DBM is allowed as an alias for DBMW.

5-23

Section 5 Listener Input Formats

(3) Suffix units

Table 5-2 Suffix units

Recommended Quasi recommended
Item Name
mnemonic of unit mnemonic of unit
Current A Ampere
Atmospheric pressure ATM Atmosphere
Charge C Coulomb
Luminance CD Candela
Decibel DB Decibel
Power DBM Decibel milliwatt
Capacitance F Farad
Mass G Gram
Inductance H Henry
Frequency (hertz) HZ Hertz
Mercury column INHG Inches of mercury
Joule J Joule
Temperature K Degree Kelvin
CEL Degree Celsius
FAR Degree Fahrenheit
Volume L Liter
Luminance LM Lumen
Luminance LX Lux
Length (meter) M Meter
FT Feet
IN Inch
Frequency (1E3 Hz) MHZ Megahertz
Resistance MOHM Megaohm
Force N Newton
Resistance OHM Ohm
Pressure PAL Pascal
Ratio (percent) PCT Percent
Angle (radian) RAD Radian
Angle (degree) DEG Degree
MNT Minute (of arc)
Time (second) S SEC Second
Conductance SIE Siemens
Automatic speed T Teda
Pressure TORR Torr
Voltage Y, Volt
Power (watt) w Watt
Speed/hour WB Weber
Luminance LM Lumen

5-24

5.3 Program Data Format

5.3.4 <NON-DECIMAL NUMERIC PROGRAM DATA>

<NON-DECIMAL NUMERIC PROGRAM DATA> is <PROGRAM DATA>
used to transfer decimal, octal, and binary numeric data as non-decimal numeric
values. Non-decimal data always begins with anumber code, or asharp (#). Itis
defined as shown in the coding syntactical chart below.

When an unspecified character string is sent, acommand error occurs.

9]

H/h

[¢]

oD

Ic

i
\

<digit>

&)

LR RLRPOP

The character string following #H or #h is
accepted by the device as a hexadecimal
number.

The character strings in parentheses are
decimal numbers.

#Habc1230 (11,256,099D)
#hAbC123

#H2DC3 (11,715D)
#h2dc3

#H8301 (33,537D)
#h8301

The character string following #Q or #q is
accepted by the device as an octal number.

#Q37 (31D)
#9437

#Q26703 (11,715D)
#426703

The character string following #B or #b is
accepted by the device as a binary number.
#B101010111100000100100011 (11,256,099D)
#b0010110111000011 (11,715D)

5-25

Section 5 Listener Input Formats

5.3.5 <STRING PROGRAM DATA>

<STRING PROGRAM DATA> is <PROGRAM DATA> consisting of only
character strings. All ASCII 7 bit codes can be used. When a character string
includes single quotation mark (*) or a double quotation mark ("), two identical
quotation marks must be written in succession per quotation mark.

O,

<inserted™

<non-single

quote char>

©

K

<inserted">

<non-double

quote char>

@

@

©)

4

A character string must be enclosed with single quotation (*) or double quota-
tion (") marks irrespective of whether the character string contains any quo-
tation mark. For example:

It'sanice day. - "lt'saniceday."
- 'lt''saniceday.’

When a character string is enclosed with single quotation marks ('), each
single quotation mark contained in the character string must be doubled.
Other characters, including double quotation marks ("), must be written as
these are. For example:

"| shouted, 'Shame." - '"l shouted, 'Shame' '." '

When a character string is enclosed with double quotation marks ("), these
double quotation marks must be doubled. Other characters, including single
quotation marks (), must be written as these are. For example:

"l shouted, 'Shame'." - """l shouted, 'Shame'." " "

<inserted'> isan single ASCI| code set in ASCII code byte 27 (decimal 39 =
symbol *). <inserted "> isasingle ASCII code set in ASCII code byte 22
(decimal 34 = symbol). <non-single quote char> and <non-double quote
char> are single ASCII codes other than single and double quotation marks

).

5-26

5.3 Program Data Format

5.3.6 <ARBITRARY BLOCK PROGRAM DATA>

<ARBITRARY BLOCK PROGRAM DATA> is non-decimal program data

starting with anumber code, or asharp, (#). Binary dataistransferred directly in

1 byte (8 bit) blocks. Differences from the non-decimal numeric program data

(<NON-DECIMAL NUMERIC PROGRAM DATA>) additionally described in

the Section 5.3.4 "<NON-DECIMAL NUMERIC PROGRAM DATA>" are as

follows:

« Dataisnot limited to numeric data, but character string data and numeric data
can be handled.

« The number of data bytes to be transferred can be written between a number
code, or asharp, (#) , and the first data.

The non-decimal datais program data that can specify the data bytes to be trans-

ferred.
<non-zero digit> [<digit> j [<8-bit data byte>

<digit> One of ASCII code bytes 30 to 39 (decimal values 48 to 57
= characters0t0 9).

<non-zero digit> One of ASCII code bytes 31 to 39 (decimal values 49 to 57
= characters 1t0 9).

<8-bit databyte> An 8 hit byte within the range from 00 to FF (decimal val-
ues 0 to 255).

(1) When the number of data bytes to be transferred is known
The upper-right route in the above syntactical chart is applied.
Specify the number of <8-bit data byte> bytesto betransferred at the <digit>
position, i.e., just before writing data. Write the number of digits of the
specified number of bytes between a number cord, or sharp, (#) and <non-
zero digit>. For example, to send 4 data bytes (DABSs), write <ARBI-
TRARY BLOCK PROGRAM DATA> asfollows:

To send 4 bytes, specify 4 at the <digit> position.
!
#14<DAB><DAB><DAB><DAB>
1
The number of digits of the value 4 at the <digit> position is4. So specify
1 at the <non-zero digit> position.

To send 4 bytes, specify 4 at the <digit> position. Leading 0s may be
specified.
!
#3004<DAB><DAB><DAB><DAB>
1
The number of digits of the value 4 at the <digit> position is 3. Specify 3
at the <non-zero digit> position.

5-27

Section 5 Listener Input Formats

(2) When the number of data bytes to be transferred is unknown
The lower-right route in the above syntactical chart is applied. Write #0
before the first data and write NL"END after the last data, causing exitless
termination.

#0<DAB><DAB><DAB><DAB><DAB>NLIEND

(3) Handling integer-precision binary data
Integer-precision binary data is used as <ARBITRARY BLOCK>-type
transfer data, whether it is program data or response data, and has the speci-
fications summarized in the Table 5-3. Negative values are processed as
two's complements.

Table 5-3

Number of transfer bytes

1, 2, 4, or 8 bytes

Byte transfer order

Bytes are transferred sequentially, starting at the most significant byte.

Signed binary code

LSD eeeene Right-justify

Unsigned binary code

LSD -eveee Right-justify
MSB oo Not asign bit
Pad unused high-order bits with Os.

Ranges of signed and unsigned 1 byte (8 bit) and 2 byte (16 bit) integer data are
shown below.

8-Bit Binary With Sign No Sign 16-Bit Binary With Sign No Sign
10000000 -128 128 1000000000000000 -32768 32768
10000001 -172 129 1000000000000001 -32767 32769
10000010 -126 130 1000000000000010 —32766 32770
11111101 -3 253 1111111111111101 -3 65533
11111110 -2 254 1111111111111110 -2 65534
11111111 -1 255 1111111111111111 -1 65535
00000000 0 0 0000000000000000 0 0
00000001 1 1 0000000000000001 1 1
00000010 2 2 0000000000000010 2 2
00000011 3 3 0000000000000011 3 3
01111101 125 125 0111111111111101 32765 32765
01111110 126 126 0111111111111110 32766 37266
01111111 127 127 0111111111111111 32767 32767

5-28

5.3 Program Data Format

Internal representations of signed 1, 2, 3, 4, and 8 byte integer data are shown
below. When the sign bitisO, it indicates positive data. When asign bitis1, it
indicates negative data.

() (Integer par) The decimal point position is fixed at the right of the LSB bit,
«Q

E] gerp these data are aso called fixed-point binary numbers. As the
17 0 1 *-Decimal point decimal point position is fixed, digits below the decimal point
| |
| 1bytes 1| 2 bytes are discarded if an attempt is made to set data containing these
(2} : digits (below the decima point), that is, integer data is set in
Q (Integer part)

S : the integer part. For unsigned data, al bits are set in the
115 14 817 01 *-Decimal point integer part.
| |
| lbytes | 2bytes | 3bytes 4 bytes

c_n. l ' l

Q | (Integer part) I

> | : |

131 24123 16]115 817 0 1 £-Decimal point

| | |

I lbytes | 2bytes | 3bytes | 4bytes 1 5bytes 6 bytes 7 bytes 8 bytes

o : | | = : : :

Q ! | | (Integer part) | | |

> : | | ! | | |

63 56 55 48 47 40 39 3231 24 23 16 15 8 7 0

Decimal point

5-29

Section 5 Listener Input Formats

(4) Floating-point binary data

Floating-point binary data, whether it is <PROGRAM DATA> or <RE-
SPONSE DATA>, isused as <ARBITRARY BLOCK>-type transfer data.
Our products do not support floating-point binary data; however, general
specifications are explained below.

Floating-point binary data must consists of the following three fields:

@ Sign field (sign bit)

(b) Exponent field (exponent bit)

(© Mantissafield (mantissabit)

Numeric data having a decimal point is handled here. It has two types of
precision: single precision and double precision. Field structures and trans-
fer orders are shown in the Table5-4. Meanings of symbols are asfollows:

Table 5-4
Precision Number of transfer bytes Field structure and transfer order
DIO line
Transfer byte
8(7|6|5|4|3|2]1
1st byte S|IEM|E|E|E|E|E|E
2nd byte ELIFM| F| F|F|F | F | F
Single 3rd byte FIF|F|F|F|F|F]|F
.g. 4 bytes b
precision 4th byte FIF|F|F|F|F|F]|F
Sign bit : 1 bit
Exponnent bit : 8 bits (+127 to —126)
Mantissa bit: 23 bits
DIO line
Transfer byte
8(7|6|5(|4|3[|2]1
1st byte S|IEM|E|E|E|E|E|E
2nd byte E|E|E|EL|IFM| F | F | F
Double 3rdto7thbyte | F| F| F| F|F | F|F|F
. 8 bytes
precision 8th byte FIF|F|F|F|F|F]|F
Sign bit : 1 bit
Exponnent bit : 11 bits (+1023 to —1022)
Mantissa bit: 52 bits

5-30

5.3 Program Data Format

5.3.7 <EXPRESSION PROGRAM DATA>

The <EXPRESSION PROGRAM DATA> element sends the expression for ob-
taining a scalar, vector, matrix, or string value to a device, allowing the deviceto
calculate avaluein place of the controller. Its coding syntactical chart is asfol-
lows:

@ <expression> @

<expression>: A sequence of ASCII characters represented by ASCII code
bytes 20-7E (decimal values = 32 to 126), excluding thefol-
lowing six characters:

............... double quotation mark
- number code (sharp)

................ single quotation mark

[parenthesis (left)
) EET parenthesis (right)
e semi-colon

If atb+c iswritten as <expression>, then the above syntactical chart will be ex-
pressed as
(atb+c)

To transfer thisto a device, <PROGRAM DATA> discussed on pages 4-16 to 4-
35 can be used with the exception of the <INDEFINITE LENGTH ARBITRARY
BLOCK PROGRAM DATA>. Upon receipt of (<expression>), the device ob-
tains the solution to this expression.

NOTE:
The MT9810B does not support the <expression> function. If calcula-
tion of an expression is required, the solution to the expression must be
obtained by the controller and the resultant numeric data must be trans-
ferred to the device as <PROGRAM DATA>.

5-31

Section 5 Listener Input Formats

5-32.

Section 6 Talker Output Format

Device messages transferred between the controller and devices are classified
into program messages and response messages.
This section explains the formats of the program messages sent from a talker to a

listener.

6.1 Differences in Syntax between Listener Input Formats and Talker

Output FOrMALS ...oiiiieieeee e 6-3
6.2 Response Message Functional Elementscccocceeeiieennnns 6-4
6.2.1 <TERMINATED RESPONSE MESSAGE->................. 6-4
6.2.2 <RESPONSE MESSAGE TERMINATOR> 6-4
6.2.3 <RESPONSE MESSAGE>cccooviiiiiiicniiieee, 6-5
6.2.4 <RESPONSE MESSAGE UNIT SEPARATORs 6-5
6.2.5 <RESPONSE MESSAGE UNIT>......cccoviiiiiiiiieninne 6-6
6.2.6 <RESPONSE HEADER SEPARATOR>.........cccceenee. 6-6
6.2.7 <RESPONSE DATA SEPARATOR>cccccoivviienienne 6-7
6.2.8 <RESPONSE HEADER>.......ccccooiiiiiiienieeeeeee 6-7
6.2.9 <RESPONSE DATA>ocoiiiiiiiiteiereeee e 6-9

Section 6 Talker Output Format

Typical response messages are: measurement result, setting, and status informa-

tion. Response messages are classified into those with header and those without

header.

The following diagram shows that when the message unit of a setting wavelength
query and a measurement range query is sent to the power meter unit inserted into

Channel 1, each response message is sent from the device to the controller in

ASCII strings with a header.

<TERMINATED RESPONSE MESSAGE>
A

~ N
<RESPONSE MESSAGE> <RESPONSE MESSAGE TERMINATOR>
s A ~S
Taker |/ Listener
SENSE1: POWER: WAVELENGTH 1550E-9 ; SENSE1: POWER: RANGE: UPPER-10 <NL>) i
(controller) \\I > > (device)
\ \ddresm 5
<RESPONSE MESSAGE UNIT> <RESPONSE MESSAGE UNIT SEPARATOR> <RESPONSE MESSAGE UNIT> <NL>

SENSE1: POWER: WAVELENGTH _ 1550E-9 H SENSE1: POWER: RANGE: UPPER _ -10

v

<RESPONSE HEADER> <RESPONSE DATA> <RESPONSE HEADER> <RESPONSE DATA> NL
SENSE1: POWER: WAVELENGTH 1550E-9 SENSE1: POWER: RANGE: UPPER -10
<RESPONSE HEADER SEPARATOR> <PROGRAM HEADER SEPARATOR>
sp sp
<response mnemonic> <character response data> <character response data>
SENSE1: POWER: WAVELENGTH 1550E-9 -10

The above operation portions can be described as a program, as shown below.

Call Send (0,15,"SENSE1:POWER:WAVELENGTH?;SENSE1:POWER:

RANGE:UPPER?",NLend)"!
Call Receive (0,15,buf1,NLend)™
NOTE t1:

Sends a query message unit of the setting wavelength and measurement

range.

NOTE t2:

If the terminator NL is detected, the response message
SENSE1:POWER:WAVELENGTH 1550E-9; SENSEI:POWER:

RANGE:UPPER -10 are read into bufl.

A response message is a sequence of functional elements, the minimum units that
can represent functions, as is the case with the program message. In the above
figure, functional elements are indicated by uppercase characters enclosed in the

brackets (< >). Functional elements are further classified into coding elements

which are indicated by lowercase characters enclosed in the brackets (< >).

The following pages explain talker output formats focusing on the differences
from listener input formats starting with the Section 6.1 "Differences in Syntax

between Listener Input Formats and Talker Output formats."

6-2

6.1 Differencesin Syntax between Listener Input Formats and Talker Output formats

6.1 Differences in Syntax between Listener Input For-
mats and Talker Output formats

Significant differences in syntax between the listener and the talker are as fol-

lows:
Listener format

Talker format

Program can be written flexibly so that devices can accept
program messages from the controller. If a program mes-
sage involves some description errors, it can execute its
function normally. For example, unlimited number of
<white space> element can be used in order to make an
easy-to-read program.

Messages are output following strictly defined syntactical
rulesto allow the controller to accept the response messages
fromthe device. Therefore, the syntax of response mes-
sages permits only one notation for a function.

The summary of the differences in output format between the listener and the
talker is shown in the Table 6-1. In thistable, "0/1 or more spaces" indicates

<white space>.

Table 6-1

Talker output response

Item Listener input program message syntax
putprog gesy message syntax
Characteristic (Flexible) (Strict)
Alphabetic characters | No difference between uppercase Uppercase characters only
Character before and after Uppercase character E
0 or more spaces + E/e + 0 or more spaces
NR3 exponent part E only
+sign of NR3 exponent part | Omissible Required
Two or more white spaces can be written before/after a
<white space> ¥ i = Not used
arator or before aterminator.
Header with program data a) Datawith header
Message unit () Header . prog @ .
(b) Header without program data (b) Data without header
Unit separator 0 or more spaces + Semicolon Semi-colon only
Space before header 0 or more spaces + Header Header only
Header separator Header + 1 or more spaces Header + One $20 1
Data separator 0 or more spaces + Comma+ 0 or more spaces Comma only
NL
Terminator 0 or more spaces + One of { EOI NL+EQI

NL+EOQI

NOTE:

ASCII code byte 20 (decimal value 32 = ASCII character SP, space)

6-3

Section 6 Talker Output Format

6.2 Response Message Functional Elements

Response messages output from atalker are terminated with an NLY END signal,
alowing the controller to accept these messages. Functional elements of these
response messages are explained here.

Rules for syntactical chart notation are the same as those for program messages.
Refer to the Section 5 "Listener Input Format" for the information. Also func-
tional and coding elements, which are the same as those of program messages, are
not explained in this section. Refer to the Section 5 "Listener Input Format" as
well.

6.2.1 <TERMINATED RESPONSE MESSAGE>

<TERMINATED RESPONSE MESSAGE> is defined as follows:

<RESPONSE

<RESPONSE MESSAGE>

O

MESSAGE TERMINATOR>
Refer to 6.2.2

Refer to 6.2.3

<TERMINATED RESPONSE MESSAGE> is adata message having al the nec-
essary functional elements to be sent from a talker to a device.

To complete transfer of <RESPONSE MESSAGE>, <RESPONSE MESSAGE
TERMINATOR> is added at the end of <RESPONSE MESSAGE>.

6.2.2 <RESPONSE MESSAGE TERMINATOR>

<RESPONSE MESSAGE TERMINATOR> is defined as follows:

<RESPONSE MESSAGE TERMINATOR> is placed after the last <RE-
SPONSE MESSAGE UNIT> to terminate the sequence of one or more fixed-
length <RESPONSE MESSAGE UNIT> elements.

6-4

6.2 Response Message Functional Elements

6.2.3 <RESPONSE MESSAGE>
<RESPONSE MESSAGE> is defined as follows:

m
MESSAGE UNIT
SEPARATOR>
Refer to 6.2.4

<RESPONSE MESSAGE UNIT>
Refer to 6.2.5

<RESPONSE MESSAGE> is a sequence of one or more <RESPONSE
MESSAGE UNIT> elements.

The <RESPONSE MESSAGE UNIT> element is a single message sent from a
device to a controller. A <RESPONSE MESSAGE UNIT SEPARATOR> is
used as a separator for separating multiple <KRESPONSE MESSAGE UNIT> ele-
ments.

6.2.4 <RESPONSE MESSAGE UNIT SEPARATOR>
<RESPONSE MESSAGE UNIT SEPARATOR> is defined as follows:

N
L/

<RESPONSE MESSAGE UNIT SEPARATOR> is used to separate <RE-
SPONSE MESSAGE UNIT> elementswith a<UNIT SEPARATOR>, or asemi-
colon (;), when outputting a sequence of multiple <RESPONSE MESSAGE
UNIT> elements as one <RESPONSE MESSAGE>.

6-5

Section 6 Talker Output Format

6.2.5 <RESPONSE MESSAGE UNIT>

<RESPONSE
HEADER>
Refer to 6.2.8

<RESPONSE MESSAGE UNIT> isdefined as follows:

<RESPONSE
DATA SEPARATOR>
Refer to 6.2.7

<RESPONSE
HEADER SEPARATOR>
Refer to 6.2.6

<RESPONSE DATA>
Refer to 6.2.9

<RESPONSE
DATA SEPARATOR>
Refer to 6.2.7

<RESPONSE DATA>

Refer to 6.2.9

There are two kinds of useage for <RESPONSE MESSAGE UNIT>. Oneis
<RESPONSE MESSAGE UNIT> with header, which returns the result of pro-
cessing the program-message-set information accurately. The other is <RE-
SPONSE MESSAGE UNIT> without header, which returns only the measure-
ment result.

6.2.6 <RESPONSE HEADER SEPARATOR>

<RESPONSE HEADER SEPARATOR> is defined as follows:

(=)
&

<RESPONSE HEADER SEPARATOR> is one space written after <KRESPONSE
HEADER> to be separated from <RESPONSE DATA>.

The space SP corresponds to ASCII code byte 20 (decimal 32).

In a<RESPONSE MESSAGE> with header, a space must always exist between
the header and the data as a <RESPONSE HEADER SEPARATOR>. The sepa-
rator indicates the end of the <KRESPONSE HEADER> as well as the beginning
of <RESPONSE DATA> at the same time.

6-6

6.2 Response Message Functional Elements

6.2.7 <RESPONSE DATA SEPARATOR>
<RESPONSE DATA SEPARATOR> isdefined as follows:

(O
>/

When multiple <RESPONSE DATA> elements are output, <RESPONSE DATA
SEPARATOR> must be placed between these data elements.

6.2.8 <RESPONSE HEADER>

The format of <RESPONSE HEADER> is the same as that of <COMMAND
PROGRAM HEADER> described in the Section 5.2.8 "<COMMAND PRO-
GRAM HEADER>" with the exception of the following three points:

(1) Charactersthat can be used in <response mnemonic> are specified. For al-
phanumeric characters, only uppercase characters must be used. Other
points are the same as those of <program mnemonic>.

(2) A space cannot be written before a<RESPONSE HEADER>, whileit can be
written before a <PROGRAM HEADER>.

(3) Only one space can be written before a<RESPONSE HEADER>, while two
or more spaces can be written before a <PROGRAM HEADER>.

Refer to the Table 6-2 for the response header up to <response mnemonic>.

It should be noted that only uppercase characters must be used in <response mne-

monic>. Other points are the same as those of <program mnemonic> described in

the Section 5.2.8 "<COMMAND PROGRAM HEADER>."

6-7

Section 6 Talker Output Format

Table 6-2

Item Function
RESPONSE HEADER A header indicates a function of <RESPONSE DATA>. It explains the function
with a 12-character-long character-long character string or a <response mnemo-
nic> element that consists of uppercase characters, numeric characters, and/or

underline.

<simple response header>
Refer to (1)

<compound response header>

Refer to (2)

<common response header>

Refer to (3)

(1) <simple response header> is defined as follows.

<response mnemonic>
Refer to (4)

(2) <compound response header> is defined as follows.

mnemonic> mnemonic>

<response m ’ <response

Refer to (4)

Refer to (4) ‘

(3) <common response header> is defined as follows.

@ <response mnemonic>
—_— -

_/ Refer to (4)

(4) <response mnemonic> is defined as follows.

<upper-case

alpha>t1

_,| <upper-case m
\=/

alpha>T1

<digit>
Refer to (4) of 5.2.8

NOTE 11:
<upper-case alpha> ASCI| code bytes 41 to 5A
(decimal values 65 to 90 = uppercase characters A to Z)

6-8

6.2 Response Message Functional Elements

6.2.9 <RESPONSE DATA>

There are 11 types of <RESPONSE DATA> elements. Among these, the
MT9810B transfers the <RESPONSE DATA> shown in the hollow sguares sur-
rounded by a shade. The <RESPONSE DATA> to be returned depends on the

query message.

NOTET1:
<INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE
DATA> and <ARBITRARY ASCII RESPONSE DATA> isterminated
with NLYEND after the last byte has been transferred.

<CHARACTER
RESPONSE DATA>

<NR1 NUMERIC
RESPONSE DATA>

<NR2 NUMERIC
RESPONSE DATA>

<NR3 NUMERIC
RESPONSE DATA>

<HEXADECIMAL
NUMERIC RESPONSE DATA>

<OCTAL NUMERIC
RESPONSE DATA>

<BINARY NUMERIC
RESPONSE DATA>

<STRING
RESPONSE DATA>

<DEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>

<INDEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>1

<ARBITRARY ASCII
RESPONSE DATA>T1

|]§’ Refer to (1) of 6.2.9

[=" Referto (2) of 6.2.9

ﬂg’ Refer to (3) of 6.2.9

ﬂg’ Refer to (4) of 6.2.9

[[== Referto (5) of 6.2.9

|]§’ Refer to (6) of 6.2.9

[=" Referto (7) of 6.2.9

I]g’ Refer to (8) of 6.2.9

|]§’ Refer to (9) of 6.2.9

[[= Refer to (10) of 6.2.9

[Refer to (11) of 6.2.9

6-9

Section 6 Talker Output Format

Table 6-3

Item

Function

(1) CHARACTER
RESPONSE DATA

(2) NR1 NUMERIC
RESPONSE DATA

<Example>
123

+123
-1234

(3) NR2 NUMERIC
RESPONSE DATA

<Example>
12.3
+12.34
—12.345

(4) NR3 NUMERIC
RESPONSE DATA

<Example>
1.23E+4
+12.34E-5
—12.345E+6

* Lowercase
characters cannot be
used for E.

* E must not be
preceded and
followed by a space.

 +in the exponent part
is mandatory.

* +in the mantissa part
is mandatory.

Data consisting of the same character string as that of <response mnemonic>.
Accordingly, the character string always begins with an uppercase character and
itslength is less than 12 characters. Numeric parameters must not be used.

<response mnemonic>

Refer to (4) of 6.2.8

Integer data, i.e., a decima value of an integer that has neither decimal point nor

exponent.
<digit>]

Refer to (4) of 5.2.8

Fixed-point data, i.e., a decimal value other than integers or a decima value hav-
ing an exponent.

<digit> /—\ <digit>
Refer to (4) U Refer to (4)
of 5.2.8 of5.2.8

Fixed-point data, i.e., a decima value having an exponent.

<digit>
Refer to (4)
of 5.2.8

<digit>
Refer to (4)
of5.2.8

@

<digit>
Refer to (4)
of 5.2.8

6-10

6.2 Response Message Functional Elements

Table 6-3 (continue)

Item

Function

(5) HEXADECIMAL
NUMERIC RESPONSE

DATA

<Example>
#HABC123
#H2DC3
#H8301

(6) OCTAL NUMERIC

RESPONSE DATA

<Example>
#Q37
#Q26703
#Q30562

(7) BINARY NUMERIC

RESPONSE DATA

<Example>
#B011101
#B1011
#B1011

Data represented in hexadecimal notation.

(#)
N

S

Data represented in octal notation.

(D)
NN

Data represented in binary notation.

(#)
\

Q

éé PRRRPPPP| HOPROPG

6-11

Section 6 Talker Output Format

Table 6-3 (continue)

(9) DEFINITE LENGTH
ARBITRARY BLOCK
RESPONSE DATA

<Example>
Transferring 11256099D
in a 4-byte blocks

!
#1400ABC123

(10) INDEFINITE LENGTH
ARBITRARY BLOCK
RESPONSE DATA

<Example>
Indefinite-length
-250, =50, 120, ...
are transferred

!
#0FFO6FFCEO0078

(11) ARBITRARY ASCII
RESPONSE DATA

<Example 1>
<ASCII Byte><ASCII
Byte>NLEND
<Example 2>
NLOEND

Item Function
(8) STRING RESPONSE | Any ASCII 7-bit code can be used.
DATA The character string must be enclosed with double quotation marks ().
When a character string contains double quotation marks, two identical quotation
<Example> marks must be written in succession per quotation mark.
"This is a text" Since a CR, LF, of space can be used, this element is suitable for outputting a text
"Say,""Hello"." to the printer or CRT.

<inserted">

<non-double

quote char>

Fixed-point 8-bit binary block data.

It is suitable for transferring large-volume data, 8-bit extended ASCII code, and
non-display data. Refer to the Section 5.3.6 "<ARBITRARY BLOCK PRO-
GRAM DATA>" for more details on individual elements.

<non-zero
- <digit> <8-bit
digit>
Refer to data byte>
Refer to
5.3.6 Refer to 5.3.6

5.3.6

Indefinite-length 8-bit binary block data.
#0 must be written before the first data.
The last data must be followed by NLCOEND for termination.

<8-bit
data byte>
Refer to 5.3.6

ASCI| data bytes except NL character transferred in succession.
The last data must be followed by NLOEND for termination.

<ASCII data byte>

6-12.

Section 7 Common Commands

This section explains common commands and common query commands speci-
fied by IEEE 488.2. These common commands are not bus commands which are
used as interface messages. Like device messages, the common commands are
data messages used when the bus data mode (or the ATN line) is False. These
commands can be applied to all measuring instruments, including those of other
companies, that comply with |EEE 488.2. |EEE 488.2 common commands al-
ways begin with an asterisk (D).

7.1 Classification of Supported Commands and References....... 7-2

7-1

Section 7 Common Commands

7.1 Classification of Supported Commands and Refer-

ences
MT9810B-supported commands discussed previously are classified by function
group as shown in the Table 7-1. Details on these commands are given in apha-
betical order on the next and subsequent pages.
Table 7-1
Group Function by group Mnemonic
Information about device connected to the system (e.g., manufacturer (ODN?
System data . .
name, type name, and serial number) is returned. COPT?
Control inside the device: RST
Internal operation (a) Resetting of deviceat level 3 TST?
(b) Self-test and error detection inside the device)
A deviceis synchronized with the controller by: OPC
L () Servicerequest wait
Synchronization . . CoPC?
(b) Device output queue wait WA
(c) Forced sequential execution
. . (CLS
A status byte consists of a status summary message. Summary bits of ESE
the status summary message are set by a standard event register, (ESE?
output queue, and extended event register (or an extended queue).)
Status and event . .) (ESR?
Three commands and four queries are provided to set, clear, validate, CERE
and invalidate the data in these registers and queues and to know the ERE?
register settin ing queries.)
egi ings using queri —

7-2

[CLS

Command

*CLS Clear Status Command

(Clears status byte registers)

Service request-——---—-—-----

(1) Format
CLs

(2) Explanation

The OCL S common command clears all status structures (i.e., event registers
and queues) except an output queue and its MAV summary messages, thus
clearing the corresponding summary messages.

Issuing a[ICL S command after <PROGRAM MESSAGE TERMINATOR>
or before <QUERY MESSAGE UNIT> will clear all status bytes. With this
method, all unread messagesin the output queue will also be cleared. Values
set in enable registers are not changed by the CCL S command.

|
occurrence | -
| OPERation
|
! status register
; /\ ! Standard event
| register
|
MSS 6 RQS f[«—-f-————"—"-\—- !
ESB
r hY
MAV olo|9|9|o
112l 1. Output Queue
Ol oo D
3
2
1 \ / QUEStionable
status register
0 Error/Event
\/ queue
Status summar
y Not used
message
SOURce
Status Byte Register status register

7-3

[ESE

Command/Query

*ESE

Standard Event Status Enable Command
(Sets or clears the standard event status enable register)

@)

@)

Format
[ESE<HEADER SEPARATOR><DECIMAL NUMERIC PROGRAM
DATA>

In this particular format <DECIMAL NUMERIC PROGRAM DATA>isa
value rounded to an integer, 0 to 255 (base is 2 and binary weights are as-
signed).

Explanation

Thetotal of values(20=1, 2t =2, 22=4,2°=8, 2= 16, 2°= 32, 2°= 64, and/
or 27 = 128) corresponding to the standard event status enable register bits 0,
1,2,3,4,5, 6, and/or 7 that are to be enabled becomes program data. The
value of the bit to be disabled is 0.

disabled=0,
disabled=0,
disabled=0,
disabled=0,
disabled=0,
disabled=0,
disabled=0,
disabled=0,

Logical OR |

enabled=128 (27) z £ z Power-ON
enabled=64 (2°) |6 @ | 6 | User request
enabled=32 (2% |5 @ 5| Command error
enabled=16 (2% 4| @ [4| Execution error
enabled=8 (2%) E @ E Device-dependent error
enabled=4 (2 |2 @ | 2 [Query error
enabled=2 @) |1 @ | 1 [Bus control request
enabled=1 (2° O @ | 0 | Operation complete

Standard Event Status Standard Event Status

Enable Register Register

*ESE?

Standard Event Status Enable Query

(Returns the current value of the standard event status enable register)

@)

@)

®)

Format
[ESE?

Explanation

The value (NR1) of the standard event status enable register is returned.
Response message

NR1=0to 255

7-4

[ESR?

Query

*ESR? Standard Event Status Register Query

(Returns the current value of the standard event status register)

1)

)

Format
[ESR?

Explanation

NR1 isreturned as the current value for standard event status register. NR1
is obtained from the sum of the bit digit values enabled by the standard event
statusregister for 20=1,21=2,22=4.28=8,2*=16,25=32,2°=64,2" =
128. For example, if eventsoccur in bit2 and 4, the value 20 (=22 + 2%) isread
and thisregister iscleared. In addition, the logical OR value enabled by the
standard event status enable register (*ESE) is transmitted to bit 5 of the
status byte register as an event summary bit.
The contentsfor each bit of the standard event status register are explained in
item 8.4.1. "1" is set to the bit when an event corresponding to each event

QOcCcurs.
! To be set in Status Byte Regls.ter bit L_l Logical OR |
5, an ESB (Event Summary Bit) |
disabled=0, enabled=128 (27) [7] g
disabled=0, enabled=64 (2¢) |6 | (&)
disabled=0, enabled=32 (25) [5| (&)
disabled=0, enabled=16 (2¢) |4] (&)
disabled=0, enabled=8 (2% 3] @
disabled=0, enabled=4 (22 |2] (&)
disabled=0, enabled=2 (2% [1] ()
disabled=0, enabled=1 (2 |0 |—=(&)

Standard Iﬂant Status
Enable Register

®)

Response message NR1
NR1=0to 255

olr|v]w]s]ala]~]

Power-ON

User request
Command error
Execution error
Device-dependent error
Query error

Bus control request
Operation complete

Standard Iﬂant Status
Register

7-5

[TDN?

Query

*IDN? Identification Query

(Returns the manufacturer name, type name, serial number, and firmware level of the product)

(1) Format
[(ODN?

(2) Explanation

A manufacturer name, type name, serial number, and firmware level are returned.

Software version
= 0
= MT9810B
» ANRITSU

When the manufacturer of the product, whose type name, serial number, and
software/hardware version number are Anritsu, 0, and 1 respectively. Send-
ing a common query [IDN?to a device will return aresponse message con-
sist of the above four fields.

Field 1 Product manufacturer (e.g., ANRITSU)

Field2 Typename

Field 3 Serial number (e.g., 0)

Field4 Firmware version No. (control software version and optical soft-
ware version)

Return ASCII character "0" to not to return a serial number and firmware
version in fields 3 and 4.

(3) Response message
A response message which consists of the above four fields separated by
commasis sent as <ARBITRARY ASCIlI RESPONSE DATA>.
<Field 1> <Field 2> <Field 3> <Field 4>
Overall length of the response message is |less than 72 characters.

7-6

[OPC

Command/Query

*OPC Operation Complete Command

(Sets bit 0 of the standard event status register when device operations have been compl eted)

(1) Format
oPC

(2) Explanation
When all the pending device operations have been completed, standard event
status register bit O (i.e., operation complete bit) is set. However, since the
MT9810B does not have an overlap command, the COPC command counts

for nothing.
7
I Logical OR |
MSS 6 RQS
ESB — /L —
[7] /\@/ | 7 | Power-ON
6 @ 6 | User request
MAV — Y —

i @ i Command error
4 @ 4 | Execution error

3 — D\] .
[3 (&) | 3 [Device-dependent error
2 @ 2 | Query error

2 N () N
[1] (&) [1| Bus control request

1 enabled=2° [0] @ i Operation complete

Standard Event Status Standard Event Status
0 Enable Register Register
Status Byte Register
1 | | | | | Output Queue

*OPC? Operation Complete Query

(When device operations have been completed, sets"1" in the output queue to generate an MAV
summary message)

(1) Format
oPC?

(2) Explanation
When all the pending device operations have been completed, "1" isset in
the output queue, waiting for an MAV summary message to occur.

(3) Response message
"1" isreturned as <NR1 NUMERIC RESPONSE DATA>.

7-7

[RST

Command

*RST

Reset Command
(Restsadevice at level 3)

(1) Format
(RST

@)

Explanation
The CRST (Reset) command resets adevice at level 3 (Refer to the Table 4-
1). Atlevel 3, thefollowing items are initialized:

@

(b)

(©

(d)

C)

Device-dependent functions and states are restored to known statesirre-
spective of the device history.

The macro defined by CDDT command is restored to the device-defined
state.

A mode in which macro operation is disabled and macros are not ac-
cepted, isset. Macro definitions are restored to the designer-specified
states.

The specified device is set in the OCIS. The operation complete bit
cannot be set in the standard event status register.

[[= sections.1

The specified device is set in the OQIS. The operation complete bit
cannot be set in the output queue. The MAYV bit is cleared.

The CRST command does not affect the following:

@
(b)
(©
(d)
(€
(f)
(9
(h)

|EEE 488.1 interface state

Device address

Output queue

Service request enable register

Standard event status enable register
Power-on-status-clear flag setting
Calibration data affecting device standard
RS-232C interface condition

7-8

*OPT?

Query

*OPT? Option Identification Query

(Reports an installed option list)

1)

)

®)

Format
[OPT?

Explanation

States of installed options are returned using 1 or O.

Response message

A response message which consists of the above three fields separated by
commeasis sent as <ARBITRARY ASCIlI RESPONSE DATA>.

Since there is no option now "0" is returned.

7-9

[BRE

Command/Query

*SRE Service Request Enable Command
(Sets a service request enable register bit)

(1) Format
[BRE<HEADER SEPARATOR><DECIMAL NUMERIC PROGRAM
DATA>

In this particular format <DECIMAL NUMERIC PROGRAM DATA>isa
value rounded to an integer, 0 to 255 (base is 2 and binary weights are as-
signed).
(2) Explanation

Thetotal of values (2°=1,2'=2,22=4,2°=8,2*= 16, 2°= 32, and/or 2" =
128) corresponding to the service request enable register bits 0, 1, 2, 3,4, 5,
6, and/or 7 that are enabled becomes NR1. The value of the bit to be disabled
isO.

. Service Request

: Generation :

! | Logical OR |——1| f |

| | |

A i L |
disabled=0, enabled=128 (27) [7] (&) : 7 ! g
Not used [\--JMss 6 RQS]+------- | &
disabled=0, enabled=32 (2%) |5 ® (5[ESB ~—— | E
disabled=0, enabled=16 (2¢) | 4] (&) (4| MAV— 2
disabled=0, enabled=8 (2% |3] (&) 3] £
disabled=0, enabled=4 (2 |2] (&) 2] 2
disabled=0, enabled=2 @) |1 @ | 1 | Not used 5
disabled=0, enabled=1 (29 [0 }—(&) o 3

Service Request Enable Register Status Byte Register

*SRE? Service Request Enable Query

(Returns the current value of the service request enable register)

(1) Format
[(BRE?

(2) Explanation
The value NRL1 of the service request enable register is returned.
(3) Response message NR1
Since NR1 = bit 6 (RQS bit) cannot be set, NR1 = 0to 63 or 128 to 191.

7-10

[BTB?

Query

*STB?

disabled=0, enabled=128

disabled=0, enabled=32
disabled=0, enabled=16
disabled=0, enabled=8
disabled=0, enabled=4
disabled=0, enabled=2
disabled=0, enabled=1

Read Status Byte Command

(Returns the current value of the status byte including the M SS bit)

1)

)

®)

(2"
Not used
(2%
(29
(2%
(29
(2
(2°

Service Reques

CEREERX]

—

Format
[BTB?

Explanation

The [BTB? command returns the total of the status register value assigned
binary weights and MSS (master Summary Status) summary message value
as <NR1 NUMERIC RESPONSE DATA>.

Response message

A response message (<NR1 NUMERIC RESPONSE DATA>) is an integer
ranging from O to 255. Itisthetotal of status byte register bit values. Status
byte register bits0to 5 and 7 is assigned weights 1, 2, 4, 8, 16, 32, and 128
respectively, and the MSS bit is assigned weight 64. The MSSindicates that
thereis at least one reason for requesting a service. The status byte register
conditions of MT9810B are summarized in the Table 7-2.

Service Request
Generation

|
|
| Logical OR |——1| f !
| | |
L A |
| N—
| | [J]
(&)= 7| oPER 8
I-»{MSS 6 RQS|«------ 2
(&) 5[ESB ~—|E
() 1 >
(&) 4| MAV —— 2
D B £
(&) 3| QUES=——E
o) B =
(&) 2| QUE=—— 3
) 1 3
(&) 1| Notused =]
) 0 2
(&) 0| SOUR +—— 33

Enable Register Status Byte Register

Table 7-2
Bit Bit weights Bit name Status byte register conditions
7 128 OPER 1=Status transition at OPERation status register. 0=None
6 64 MSS/RQS | 1=Servicerequest for bit 7 or bit 5to 0. 0=None
5 32 ESB 1=Status transition at standard event status register. 0=None
4 16 MAV 1=Dataisin the output queue. 0=None
3 8 QUES 1=Status transition at QUEStionable status register. 0=None
2 4 QUE 1=Dataisin the Error/Event queue. 0=None
1 2 Not used
0 1 SOUR 1=Status transition at 1=SOURKce status register. 0=None

Refer to Section 8 for details of each status register.

7-11

[TST?

Query

*TST?

Self-Test Query

(Conducts an internal self-test and indicates whether any error has occurred)

@)

@)

®)

Format
rsT?

Explanation

The OOTST? command conducts aself-test inside the device. Thetest resultis
set in the output queue. The datain the output queue indicates that the test
has been completed without causing any error. The self-test does not require
operator intervention.

Response message

A response message is sent as <NR1 NUMBER RESPONSE DATA>.
Datarange = —32767 to 32767

NR1 = —The test has been completed without causing any error.

NR1 = 1The test has not been conducted or any error occurred during the
test.

7-12

ONAI

Command

*WALI Wait-to-Continue Command

(Causes the next command to wait until the current command has been executed by the device)

1)

)

Format
WAL

Explanation

The DNVAI command executes overlap commands as sequential commands.
If the device can start executing the next command while processing a com-
mand or query from the controller, the command or query is called an over-
lap command.

If alWWAI command is executed after an overlap command, the next com-
mand must wait for the OVAI common command to end. This also applies
to sequential commands.

However, since the MT9810B does not support overlap commands. The
OWAI command counts for nothing.

7-13

Section 7 Common Commands

7-14.

Section 8 Status Structure

This section explains the device status data specified by |EEE 488.2, the status
data structure, and the technique of synchronization between a device and a con-

troller.
8.1 |EEE 488.2 Standard Status Modelc.cccccovviiiiiiciiieenns 8-3
8.2 Status Byte REQISIErcoiiiiiiiiiiieiiiiiiee e 8-5
8.2.1 ESB and MAV Summary MeSSageccccoeuvreernneenns 8-5
8.2.2 Device Dependent Summary Messagecc.coeeennee 8-6
8.2.3 Reading and Clearing the Status Byte Register 8-7
8.3 ENnabling the SRQccccviiiiiiiiie e 8-9
8.4 Standard Event Status RegiStercceeviieiiiiiiiieceiieee 8-10
8.4.1 Definition of Standard Event Status Register Bits.......... 8-10
8.4.2 Details 0N QUETY EITOrSccviviieieiiiiieiiiiee e 8-11
8.4.3 Reading, Writing, and Clearing the Standard
Event Status RegiSterccooviiiiiiiiiiecec e 8-12
8.4.4 Reading, Writing, and Clearing the Standard
Event Status Enable Registerccocoeeviieiiiincnnn. 8-12
8.5 QUEUE MOUEI ...ciiiiiiiiieeei e 8-13
8.6 Extended Status BYLESccooiuiiiiiiiiiiiiiiieeeiiieee e 8-15
8.6.1 Status regiStercocvveiiiiieiiiie e 8-16
8.6.2 Operation Status RegiSter...........ccovveeriiiiiieeeiiiiieeeenn 8-19
8.6.3 QUESTIONABLE Status Registercccccceevviivienennn. 8-22

8.6.4 SOURCE status register

81

Section 8 Status Structure

The status byte (STB) sent to the controller is specified by IEEE 488.1. The bits
of the status byte represent a status summary message, providing a summary of
the current contents of the data stored in aregister or queue.

The following sections explain the status summary message bhits, the status data
structure for generating these status summary message bits, and the technique of
synchronizing a device with the controller using the status messages.

These functions are used to control devices from an external controller viathe

GPIB interface. These functions, except afew, can aso be used to control de-
vices from an externa controller viathe RS-232C interface.

8-2

8.1 |EEE 488.2 Standard Status Model

8.1 |EEE 488.2 Standard Status Model

The diagram shown below isthe standard model of the status data structure speci-

fied by IEEE 488.2.

Z @ z Power-ON (PON)
[6 @ | 6 [User request (URQ)
[5 | @ | 5 | Command error (CME)
| 4 | @ | 4 | Execution error (EXE) ad
E @ | 3 | Device-dependent error (DDE) ad
2 @ | 2 [Query error (QYE) ad
[1] @ | 1 [Bus control request (RQC) O
[0] (&) | 0| Operation complete (OPC) Data
Standard Event Status \I/ Standard Event Status Register Data
Enable Register | Logical OR Data
Data
Read by [ESR?
. Data
Set with CESE <NRf>
. Data
Read with CESE? ~
______________________ . Service Request | Output Queue
I Generation !
: | Logical OR |— 4 |
- _—
| | | . B
A~ | A ! @
_ I 4]
7 @171 | 5
X} I-=]MSS 6 RQS}---- 5
H O, (5] ESB ~—— 3
4 (&) 4| mav 2
B ® B :
| © | &/ [© | Q
2 (&) 2 ®
\&J
1@ 1]
|~ | \&J |~ |
o) 0
Service Request Status Byte
Enable Register Read by [(ETB? Register Read in the serial poll mode.

Set with [(BRE <NRf>.
Read with [BRE?.

Fig. 8-1 Standard status model

8-3

Section 8 Status Structure

The status model uses an |EEE 488.1 status byte. This status byte consists of
seven summary message bits provided by the status data structure. To generate
these summary message hits, the status data structure is comprised of two models:
aregister model and a queue model.

Register model

A pair of registers used to record an event that a device has encountered and a
condition. It consists of an event status register and an event status enable regis-
ter. When the results of ANDing the values of bits of these registersisnot O, the
corresponding status register bits are set to 1s. In other cases, the corresponding
status register bitsare set to Os. If the result of ORing the values of status register
bitsis 1, the summary message bitisset to 1. If theresult of ORing these bitsisO,
the summary message bit is set to 0.

Queue model

A data structure in which status values or information are removed in the same
order of which those were entered. Only when the queue structure contains data,
the corresponding bit isset to 1. If it is empty, the corresponding bit is set to 0.
Based on the concept of the above register model and queue model, the IEEE
488.2 standard status model is constructed from two types of register models and
aqueue model.

(1) Standard event status register and standard event status enable
register
Thisregister has the register model structure mentioned above. It has eight
bits corresponding to eight standard events listed below encountered by the
device.
(8 power on
(b) user request
(c) command error
(d) execution error
(e) device dependent error
(f) query error
(g) buscontrol request
(h) operation complete.
Theresult of logical OR is output to the status byte register bit 5 (DIO 4) as
an event status bit (ESB) summary message.

(2) Status byte (STB) register and service request enable (SRE) reg-
ister
The status byte register consists of an RQS bit and seven summary message
bits for setting status summary messages from the status data structure. Itis
used in combination with a service request enable register. When the result
of ORing the values of these two registersis 0, the SRQ is set ON. In this
case, the status byte register bit "DIO 7" is reserved by the system as an RSQ
bit, so this bit indicates to an external controller that a service request exists.
The function of the SRQ conformsto |EEE 488.1.

(3) Output queue
This queue has the queue model structure mentioned above. Its contents are
summarized and transferred to the status byte register bit 4 (DIO 5) as a
MAYV (message available) summary message.

8-4

8.2 Status Byte Register

8.2 Status Byte Register

The status byte register consists of device STB and RQS (or MSS) messages.
|EEE 488.1 defines the method of reporting STB and RQS messages, but it does
not define the setting and clearing protocols and STB meaning. |EEE 488.2 de-
fines device status summary messages and M SS transferred to bit 6 along with an
STB in response to the [5TB? common query.

8.2.1 ESB and MAV Summary Message

The followings are the explanations of an ESB summary message and an MAV
summary message.

@)

@)

ESB summary message

The ESB (event summary bit) summary message is defined by | EEE 488.2.
It appearsin status byte register bit 5. Thisbit indicates whether one or more
|EEE 488.2 defined events have occurred, with the service request enable
register set to allow events to occur, after the standard event status register
wasread or cleared last. The ESB summary message bit becomes True when
at least one event registered in the standard event status register becomes
True with event occurrence enabled. Conversely, the ESB summary bit be-
comes False when none of the registered events has occurred even if event
occurrence is enabled.

MAV summary message

The MAV (message available) summary message is defined by |EEE 488.2.
It appearsin status byte register bit 4. This bit indicates whether the output
queue is empty. When adevice is ready for accepting response messages
from the controller, the MAV summary message bit becomes 1 (True).
When the output queue is empty, this bit becomes 0 (False). Thismessageis
used to synchronize information exchange with the controller. For example,
the controller can send a query message to the device and wait for the MAV
to become True. The controller can perform another processing while wait-
ing for aresponse from the device. If the controller has started reading the
output queue without checking the MAV, all system bus operations are sus-
pended until aresponse is received from the device.

8-5

Section 8 Status Structure

8.2.2 Device Dependent Summary Message

Service request

|EEE 488.2 does not define whether statusregister bit 7 (DIO 8) and bit 3 (DIO 4)
to bit 0 (DIO 1) are used as status register summary bits or the bits indicating
existence of datain the queue. Accordingly, these bits can be used as device
dependent summary message bits.

Device dependent summary messages have aregister model or queue model sta-
tus data structure. This status register isapair of registers used to report events
and statesin parallel or aqueue used to report states and information sequentially.
The summary bit provides a summary of the current status of the corresponding
status data structure. For the register model, the summary message bit becomes
True when one or more events have become True with occurrence of events en-
abled. For the queue model, the summary message bit becomes True when the
gueue is not empty.

Each bit is assigned as shown in the figure below. According to the SCPI stan-
dard, bit 7 is assigned to an event summary bit of OPERation status register, bit 3
to an event summary bit of QUEStionable status register and bit 2 to a summary
bit of Error/Event queue. In addition, bit 0 isnot used and bit 1 is assigned to the
event summary bit of the SOURce status register as a device-specific summary
message.

|
occurrence | -
| OPERation
i Status register
. /\ | Standard event
| register
|
MSS 6 RQS f[«-f--————-\-- !
ESB
r A}
MAV g|lo|o|o|o
LI |- Output Queue
Ol ol |
3
2
1 \ / QUEStionable
Status register
0 Error/Event
\/ Queue
Status summary
Not used
message
SOURce

Status Byte Register

Status register

8-6

8.2 Status Byte Register

8.2.3 Reading and Clearing the Status Byte Register

Status byte register contents can be read using serial polling or an [5TB? com-
mon inquiry. |EEE 488.1 defined STB messages can be read by either method,
but the value transferred to bit 6 (position) varies depending on the method.
status byte register contents can be cleared using a [CL S command.

(1) Reading the status byte register using serial polling (only when

)

®)

a GPIB interface bus is used)

When | EEE 488.1 defined serial polling is carried out, the device must return
a7 bit status byte and |EEE 488.1 defined RQS message bit. According to
|EEE 488.1, the RQS message indicates whether the device has issued SRQs
in the True state. The status byte value is not affected by serial polling.
Immediately after being polled, the device must set the rsv message in the
False state. If the device is polled again before a cause of issuing a new
service request occurs, the RQS message has already been set in the False
state.

Reading the status byte register using an [5TB? common query
The OSTB? common query causes the device to output status byte register
contents and one <NR1 NUMERIC RESPONSE DATA> from the MSS
summary message. The responseisthetotal of the status register value as-
signed binary weights and M SS summary message value. Status byte regis-
ter bitsOto 5 and 7 are assigned weighs 1, 2, 4, 8, 16, 32, and 128 respec-
tively, and the MSSis assigned weights 64. Theresponseto the (STB?isthe
same as that to seria polling with the exception that an M SS summary mes-
sage appearsin bit 6 instead of an RQS message.

Definition of MSS (Master Summary Status)
The MSSindicates that the device has at least one cause of issuing a service
request. In the device's response to the [STB? query, the MSS message
appearsin bit 6. However, it does not appear in the response to seria polling.
It must not be regarded as part of the IEEE 488.1 defined status byte. The
MSSistheresult of ORing the values of status byte register and SRQ enable
(SRE) register bitstotally. Specifically, the MSS is defined as follows:
(STB Register bit 0 AND SRE Register bit 0)
OR
(STB Register bit 1 AND SRE Register bit 1)
OR

(STB Register bit 5 AND SRE Register bit 5)
OR
(STB Register bit 7 AND SRE Register bit 7)
In the definition of the M SS, the values of bits 6 of the status byte register
and SRQ enable register are ignored. Accordingly, when calculating the
MSS value, the status byte may be handled assuming that it is represented by
8 bitsand bit 6 is always 0.

8-7

Section 8 Status Structure

(4) Clearing the status byte register using a OCLS common com-
mand
The OCLS common command clears all status structures, except the output
queue and MAV summary message (i.e., event registers and queues), and the
corresponding summary messages.

Issuing a [ICL S command after the <PROGRAM MESSAGE TERMINA-
TOR> element or before the <Query MESSAGE UNIT> element clears al
status bytes. With this method, all unread messages in the output queue are
cleared and the MAV message becomes False. When replying to the [(STB?,
the M'SS message becomes False, too. Values of enable registers are not

affected by CCLS.

Service request-—-———-———-—-———

|
occurrence | -
| OPERation
i Status register
. /\ I Standard event
| register
|
MSS 6 RQS |[*+-f-————-\—- !
ESB
r h)
MAV g|lo|o|o|o
SN B0 EN B0 B R (OO Output Queue
[SRR VI BVl N
3
2
1 \ / QUEStionable
Status register
0 Error/Event
\/ Queue
Status summar
y Not used
message
SOURce
Status Byte Register Status register

8-8

8.3 Enabling the SRQ

8.3 Enabling the SRQ

Enabling the SRQ allows a summary message in the status byte register to be
selected in response to aservice request. The service request enable (SRE) regis-
ter shown below can be used to select a summary message.

Bits of the service request enable register correspond to the bits of the status byte
(STB) register. When 1isset in astatus byte bit corresponding to a significant bit
of the service request enable register, the devices sets the RQS bit to 1 and issues
aservice regquest to the controller. For example, when bit 4 of the service request
enable register is set (enabled) in advance, a service request can be issued to the
controller each timethe MAV bit isset to 1 (if the output queue has data).

disabled=0, enabled=128 (27) [7]

o
O

|]

Notused [X| | | | | | | '--[MSS6RQSf+--—-——- a

i = = 5 (&) -~ g
disabled=0, enabled=32 (2°) |5 | (&) ESB 1S
disabled=0, enabled=16 (2%) [4] (&) MAV ~——— &
disabled=0, enabled=8 (2% |3] (&) £
disabled=0, enabled=4 (2?) |2] ~(&)= 2
disabled=0, enabled=2 @) |1} —@~ Not used %
disabled=0, enabled=1 (29 [0 |—~(&) EH

. Service Request
Generation

Service Request Enable Register Status Byte Register

@)

@)

®)

Reading the service request enable register

service request enable register contents can be read using an CSRE? common
inquiry. The response message to this query is <NR1 NUMERIC RE-
SPONSE DATA>, an integer ranging from 0 to 255. Itisatotal of values of
the service request enable register. Service request enable register bitsO0to 5
and 7 are assigned weights 1, 2, 4, 8, 16, 32, and 128, respectively. Unused
bit 6 must always be 0.

Updating the service request enable register

The service request enable register is written using an CSRE common com-
mand. The CBRE common instruction is followed by a <DECIMAL NU-
MERIC PROGRAM DATA> element. <DECIMAL NUMERIC PRO-
GRAM DATA> isrounded to an integer. It isrepresented in binary notation
using abase 2, indicating the total of values of service request enable register
bits (weight value). When the value of this bit is 1, it indicates the enabled
state. When the value of this bit is 0, it indicates the disabled state. The
value of bit 6 must always be ignored.

Clearing the service request enable register

The service request enable register can be cleared by executing an CSRE
common command or turning on the power.

When an [ERE common command is used, the service request enable regis-
ter can be cleared by bringing the <DECIMAL NUMERIC PROGRAM
DATA> element value to 0. Clearing the service request enable register
disablesthe status information to generate an rsv local message, suppressing
issue of a service request.

When the power isturned on, the service request enable register is cleared if
the Power-ON status clear flag is True and the CPSC command for disabling
clearing of this register is not supported.

8-9

Section 8 Status Structure

8.4 Standard Event Status Register

8.4.1 Definition of Standard Event Status Register Bits

Any device conforming to | EEE 488.2 must have the standard event status regis-
ter. Operation of the standard event register model is shown below, and the
meaning of standard event status register bitsgivenin |IEEE 488.2 isexplained in

the Table 8-1.
disabled=0, enabled=128 (27) [7] (&)=—] 7] Power-on (PON)
disabled=0, enabled=64 (2°) |6 | @ | 6 | User request (URQ)
disabled=0, enabled=32 (2°) |5 | @ | 5 | Command error (CME)
disabled=0, enabled=16 (2%) |4 | @ | 4 | Execution error (EXE)
disabled=0, enabled=8 (2% |3 @ | 3 | Device-dependent error (DDE)
disabled=0, enabled=4 (2 12] @ | 2 | Query error (QYE)
disabled=0, enabled=2 @) 11 @ | 1 | Bus control request (RQC)
disabled=0, enabled=1 2% |0 (&) 0 | Operation complete (OPC)
Standard Event Status Enable RegisTa T Standard Event Status Register
Set with (ESE <NRf> l Logical OR Read by [ESR?
Read with CESE? j
ESB summary message bit
(to Status Byte Register bit 5)
Table 8-1
Bit Event name Description
7 Power-ON (PON) The power has been turned ON.
Local control is requested.
6 User request (URQ) Thisbit is set irrespective of the remote/local state of the device.
Since this bit is not supported by MT9810B, it is aways 0.
A program message including a syntax error or a misspelled command
5 Command error (CME) has been received or a GET command has been received in a program
message.
4 Execution error (EXE) A program meﬁag(.e which is syntactically correct but cannot be exe-
cuted has been received.
3 Device-dependent error (DDE) An error other than CME, EXE, and QY E has occurred.
An attempt was made to read data from the output queue while it has
2 Query error (QYE) no data, or the data in the output queue has been lost due to overflow,
etc.
The device is required to be an active controller. Since this bit is not
1 Request control (RQC) -
used by MT9810B, it is always 0.
The device has completed the specified pending operation and ready
. for receiving a new instruction.
0 Operation complete (OPC) e .
This bit responds only to the COPC command and sets the operation
complete bit.

8-10

8.4 Standard Event Status Register

8.4.2 Details on Query Errors

Table 8-2

No.

Item

Description

Incomplete program message

When a device receives an MTA from the controller before receiving a
program message terminator, it discards the incomplete message
which has been received so far and waits for the next program mes-
sage. To discard the incomplete program message, the device clears
the input/output buffer, reports a query error to the status report part,
and sets the standard status register bit 2 (query error bit).

Interruption of response mes-
sage output

When a device receives an MLA from the controller before complet-
ing output of a response message terminator, it automaticaly inter-
rupts output of the response message and waits for a next program
message. To interrupt output of the response message, the device
clears the input/output buffer, reports a query error to the status report
part, and sets the standard status register bit 2 (query error bit).

When the next program mes-
sageis sent without reading a

response message

When the device cannot output a response message because the con-
troller has output a program message (including a query message) and
the next program message in succession, the device discards the
response message and waits for the next program message. A query
error is reported to the status report part likeitem No. 2.

Output queue overflow

When a program message containing many query messages is execut-
ed one after another, too many response messages to be stored in the
output queue (256 bytes) may be generated. |If more query messages
are input and the response messages to queries must be output, the out-
put queue overflows. When this happens, the device clears the output
gueue and resets the response message generation part.

The device also sets the standard event status register bit 2 (query
error bit) in the status report part.

8-11

Section 8 Status Structure

8.4.3 Reading, Writing, and Clearing the Standard Event Status Register

Table 8-3

Read

This register is read destructively in response to the CESR? common command. In other words,
this register is cleared after being read. The event bit assigned binary weights and converted to a
decimal value <NR1> is the response message.

Write

This register cannot be written externally; however, it can be cleared.

Clearing

Thisregister is cleared in the following cases:

(1) A CLS command is received.

(2) The power isturned on if the Power-ON status clear flag is True.
The device executing a Power-ON sequence first clears the standard event status register, then
records the events that have occurred in this sequence (e.g., PON event bit setting).

(3) Aneventisread in response to an CESR? query command.

8.4.4 Reading, Writing, and Clearing the Standard Event Status Enable
Register

Table 8-4

Read

This register is read non-destructively in response to the [ESR? common command. In other
words, this register is not cleared after being read. The response message is assigned binary
weights, converted from abinary value to adecimal value <NR1>, and returned.

Write

This register is written using an CESS common command. Register bits 0 to 8 are assigned weights
1, 2, 4, 8, 16, 32, 64, and 128 respectively, so atotal of values of the desired write data bitsis sent
as <DECIMAL NUMERIC PROGRAM DATA>.

Clearing

Thisregister is cleared in the following cases:

(1) An CESE command with its data value being O is received.

(2) The power isturned on with the Power-ON status clear flag in the True state or the power is
turned on when a [PSC command is not supported.

The standard event status register is not affected by the following:

(1) Change in the state of the | EEE 488.1-defined device clear function

(2) Reception of an CRST common command

(3) Reception of a (ICL S common command

8-12

8.5 Queue Model

8.5 Queue Model

The right-hand side of the figure below shows a queue model having a status data
structure. A queue is a data structure in which data is arranged sequentially,
providing information such as sequential status. A summary message indicates
that such information exists in the queue. Queue contents are read by an hand-
shake when the deviceisin TACS (talker active state).

7
O O
O O
MSS 6 RQS
O O
O O
ESB
Data Data
Data Data
MAV
Data Data
3 Data Data
MAV (message|available) Data Data
) summary bit Data Data
Queue Output Queue
1 . .
MAV (Message Available) summary bit
0 indicating the output queue is not empt

Status Byte Register

The queue that outputs an MAV summary bit to status byte register bit 4 iscalled
an "output queue." Thisqueueis mandatory. The queuethat can output an MAV
summary message to one of status byte register bitsOto 3and 7 issimply called a
"queue." Itisoptional. A summary message from the register model can also be
output to status byte register bits 0 to 3 and 7, so the summary message type
depends on the device type.

Refer to the Table 8-5 for acomparison of the output queue to general queues.

8-13

Section 8 Status Structure

Table 8-5 Comparison of Output Queue to General Queues

Item

Output queue

Queue

Data input/output type

FIFO type

Not necessary to be FIFO type

Response message units are read using only

Response message units are read with

Read an IEEE 488.2 message exchange protocol. | device-dependent query commands.
The type of these response message units | These response message units must be of
depends on the query type. the same type.

Program message elements are not written
directly. Program message elements are not writ-
Write This queue communicates with the system | ten directly.

interface using only an IEEE 488.2 message
exchange protocol.

Coded device information is indicated.

Summary message

When the output queue is not empty, the sum-
mary message bit becomes True (1).

When it is empty, the summary message bit
becomes False (0).

The MAV summary message is used to syn-
chronize information exchange between a
device and the controller.

When the queue is not empty, the
summary message bit becomes True (1).
When it is empty, the summary message
bit becomes False (0).

Clearing

This queue is cleared in the following cases:

(a) All items in the queue are read.

(b) A DCL bus command is received for mes-
sage exchange.

(c) The PON bit becomes True at Power-ON.

(d) Operation is unterminated or interrupted.

This queue is cleared in the following
cases:

(a) All items in the queue are read.

(b) A [CLS command is received.

(c) Other device-dependent means

8-14

8.6 Extended Status Bytes

8.6 Extended Status Bytes

In the SCPI standard, bit 7 in the status byte is used as "OPERation Status' and bit
3isused as"QUEStionable Status®. Bit 2 isallocated to "Error/Event Queue.”
Each status register has the following configuration. Assign bit O for a status
summary bit of "SOURce Status' as the unit-specific message.

@)

)

®)

(4)

®)

CONDITION REGISTER

The condition register remains unchanged even after reading from the exter-
nal device (controller). It cannot be set by any of the commands from the
external device (controller) and can be set only by the state change in the
measuring instrument.

TRANSITION FILTER

Thetransition filter is used to determine whether to report the state change
reported to the condition register to the event status register.

Thefilter for change from 0 to 1 is called the P-transition filter, while the
filter for change from 1 to O is called the N-transition filter. Thesefiltersare
rewritten as a mask pattern in accordance with the request from the external
device (controller) (set/clear for each bit). These mask patterns remain un-
changed even after the reading from the controller.

EVENT REGISTER

The event register can be set indirectly through the condition register or the
P/N-transition filter from the inside of the measuring instrument. The event
resister cannot be directly accessed from an application program.

EVENT ENABLE REGISTER
An event enable register for the event register.

ERROR/EVENT QUEUE

While amessage is stored in this queue, the corresponding bit in the status
byte register is set. |f a message goes out of the message queue, the corre-
sponding bit in the status byte register is cleared.

8-15

Section 8 Status Structure

8.6.1 Status register
STATus:PRESet

(1) Function
Initialization of the enable register and transition filter

(2) Program message
STATus: PRESet

(3) Explanation
Thiscommand initializes the enable register and transition filter. Each regis-
ter is set as shown in the Table 8-6.

Table 8-6

Register Filter/Enable Preset Value
Enable al o
Operation PTR al1
NTR alo
Enable alo
Questionable PTR all
NTR dl o

<node>:CONDition

(1) Function
Checking of the condition register

(2) Program message
<node>: CONDi ti on?

(3) Response message
<code>

(4) Parameter
<code>:= {n|0 < n < 32767}

(5) Explanation
This command returns the sum total of the values of the condition register.
The item of the condition register to be specified is determined with <node>.

8-16

8.6 Extended Status Bytes

<node>:ENABIle

1)

@)

®)

(4)

®)

Function
Setting of the event enable register

Program message
<node>: ENABI e <mask>
<node>: ENABI e?

Response message
<mask>

Parameter
<mask>:={n|0< n< 32767}

Explanation

This command finds the sum total of the bit digit values when the bit to be
enabled in the event enable register becomes the parameter. The bit digit
value to be disabled is zero. The item of the event enable register to be
specified is determined with <node>.

<node>[:EVENTt]

1)

@)

®)

(4)

®)

Function
Checking of the event register

Program message
<node>[: EVENt] ?

Response message
<code>

Parameter
<code>:={n|0< n< 32767}

Explanation
This command returns the sum total of the values of the event register. The
item of the event register to be specified is determined with <node>.

8-17

Section 8 Status Structure

<node>:NTRansition

@)

@)

®)

(4)

®)

Function
Setting of the N-transition register

Program message
<node>: NTRansi ti on <mask>
<node>: NTRansi ti on?

Response message
<mask>

Parameter
<mask>:={n|0< n< 32767}

Explanation

This command finds the sum total of the bit digit values when the hit to be
enabled in the N-transition register becomes the parameter. The bit digit
valueto be disabled iszero. Theitem of the N-transition register to be speci-
fied is determined with <node>.

<node>:PTRansition

@)

@)

®)

(4)

®)

Function
Setting of the P-transition register

Program message
<node>: PTRansi ti on <nask>
<node>: PTRansi ti on?

Response message
<mask>

Parameter
<mask>:={n|0< n< 32767}

Explanation

This command finds the sum total of the bit digit values when the bit to be
enabled in the P-transition register becomes the parameter. The bit digit
valueto be disabled iszero. Theitem of the P-transition register to be speci-
fied is determined with <node>.

8-18

8.6 Extended Status Bytes

8.6.2 Operation Status Register

The operation status register indicates the state of the equipment.
The commands are shown below. Insert these commandsinto the <node> portion

in the status register.

Command Description
STATus:OPERation Operation status register
STATus.OPERation:SETTling State of temperature of light source unit
STATus.OPERation:MEA Suring Measuring condition of optical sensor unit
STATus:OPERation:CORRection State of zero-set operation of optical sensor unit
STATus:OPERation:AVERage State of averaging operation of optical sensor unit

STATus:OPERation

(1) Function
Indication of the operation status register reference

(2) Explanation
This command makes the references of the operation status register.
The state of the equipment isindicated by allocating to bits. Each bit indi-
cates the following.

Bit Description
1 State of temperature of light source unit
4 Measuring condition of optical sensor unit
7 State of zero-set operation of optical sensor unit
8 State of averaging operation of optical sensor unit

8-19

Section 8 Status Structure

STATus:OPERation:SETTIing

@)

)

Function
Indication of the state of temperature of light source unit

Explanation

This command indicates the state of the temperature of the light source unit
and indicates whether it can be used.

The bits correspond one for one with the channels in order with bit 0 as
Channel 1. Depending on the state, whether the light source unit can be used
isindicated.

Bit Corresponding channel
0 Channel 1
1 Channel 2
State Description
0 The light source unit cannot be used
1 The light source unit can be used

STATus:OPERation:MEASuring

@)

)

Function
Indication of the measuring condition of optical sensor unit

Explanation

This command indicates the measuring condition of the optical sensor unit.
The bits correspond one for one with the channels in order with bit O as
Channel 1. Depending on the state, whether the optical sensor unitisin
measurement is indicated.

Bit Corresponding channel
0 Channel 1
1 Channel 2
State Description
0 The optical sensor unit is not measuring
1 The optical sensor unit is measuring

8-20

8.6 Extended Status Bytes

STATus:OPERation:CORRecting

1)

@)

Function
Indication of the state of zero-set operation of optical sensor unit

Explanation

This command indicates the state of zero-set operation of the optical sensor
unit.

The bits correspond one for one with the channels in order with bit 0 as
Channel 1. Depending on the state, whether the optical sensor unitisin zero-
set isindicated.

Bit Corresponding channel
0 Channel 1
1 Channel 2
State Description
0 Zero-set is not being performed.
1 Zero-set is being performed.

STATus:OPERation:AVERaging

1)

@)

Function
Indication of the state of averaging operation of optical sensor unit

Explanation

This command indicates the state of averaging operation of the optical sen-
Ssor unit.

The bits correspond one for one with the channels in order with bit O as
Channel 1. Depending on the state, whether the optical sensor unit isin
averaging operation isindicated.

Bit Corresponding channel
0 Channel 1
1 Channel 2
State Description
0 Averaging operation is not being performed.
1 Averaging operation is being performed.

8-21

Section 8 Status Structure

8.6.3 QUESTIONABLE Status Register

The commands of the QUESTIONABLE status register are shown below. Insert
these commands into the <node> portion in the status register.

Command Description
STATus:QUEStionable: POWer QUESTIONABLE status register

STATus:QUEStionable: POWer:OVERRange Over range of optical sensor unit
STATus:QUEStionable: POWer:UNDerrange Under range of optical sensor unit

STATus:QUEStionable: POWer:CURRent Current abnormality
STATus:QUEStionable: POWer:ENV Temp Temperature abnormality
STATus:QUEStionable: POWer:POWer Power supply abnormality

STATus:QUEStionable:POWer

(1) Function
Indication of the QUESTIONABLE status register reference

(2) Explanation
This command makes the references of the QUESTIONABLE status regis-
ter.
The state of the device isindicated by allocating to bits. Each bit indicates
the following.

Bit Description

Over range of optical sensor unit
Under range of optical sensor unit
Remote interlock

Current abnormality

Temperature abnormality

Power supply abnormality

0O ~NON P O

STATus:QUEStionable:POWer:OVERRange

(1) Function
Indication of the over range of optical sensor unit

(2) Explanation
This command indicates the over range of the optical sensor unit.
The bits correspond one for one with the channels in order with bit O as
Channel 1. Depending on the state, whether the optical sensor unit isin over
range isindicated.

Bit Corresponding channel
0 Channel 1
1 Channel 2
State Description
0 The optical sensor unit is not over range
1 The optical sensor unit is over range

8-22

8.6 Extended Status Bytes

STATus:QUEStionable:POWer:UNDerrange

1)

@)

Function
Indication of the under range of optical sensor unit

Explanation

This command indicates the under range of the optical sensor unit.

The bits correspond one for one with the channels in order with bit O as
Channel 1. Depending on the state, whether the optical sensor unit isin
under range is indicated.

Bit Corresponding channel
0 Channel 1
1 Channel 2
State Description
0 The optical sensor unit is not under range
1 The optical sensor unit is under range

STATus:QUEStionable:POWer:CURRent

1)

@)

Function
Indication of the current abnormality

Explanation

This command indicates the occurrence of current abnormality.

The bits correspond one for one with the channels in order with bit O as
Channel 1. Depending on the state, whether current abnormality is occurring
isindicated.

Bit Corresponding channel
0 Channel 1
1 Channel 2
State Description
0 Current abnormality is not occurring.
1 Current abnormality is occurring.

8-23

Section 8 Status Structure

STATus:QUEStionable:POWer:ENVTemp

(1) Function
Indication of the temperature abnormality

(2) Explanation
This command indicates the occurrence of temperature abnormality.
The bits correspond one for one with the channels in order with bit O as
Channel 1. Depending on the state, whether temperature abnormality is oc-
curring isindicated.

Bit Corresponding channel
0 Channel 1
1 Channel 2
State Description
0 Temperature abnormality is not occurring.
1 Temperature abnormality is occurring.

STATus:QUEStionable:POWer:POWer

(1) Function
Indication of the power supply abnormality

(2) Explanation
This command indicates the occurrence of power supply abnormality.
The bits correspond one for one with the channels in order with bit 0 as
Channel 1. Depending on the state, whether power supply abnormality is
occurring isindicated.

Bit Corresponding channel
0 Channel 1
1 Channel 2
State Description
0 Power supply abnormality is not occurring.
1 Power supply abnormality is occurring.

8-24

8.6 Extended Status Bytes

8.6.4 SOURCE status register

SOURCE status register indicates the optical output status of the optical source
unit. Commandsare listed up asfollows. Use these commands by inputting them
into the <node> part of status register.

Command Description

STATus:SOURce: SOURCE status register
STATus.SOURce:SOLT Optical output status of output source unit

STATus:SOURce:

(1) Function
SOURCE status register

(2) Explanation
Refers to the SOURCE status register.
Indicate the device status by allocating to the bits. The contents of each bit

are listed below.
Bit Description
0 Optical output status of the optical source unit

STATus:SOURce:SOLT

(1) Function
Optical output status of the optical source unit

(2) Explanation
Indicates the measurement status of the optical source unit.
Each bit corresponds to the channel in order by setting bit O to channel 1, and
indicates the optical output status of the optical source unit according to the

bit status.
Bit Corresponding channel
0 Channel 1
1 Channel 2
State Corresponding channel
0 Optical output OFF status
1 Optical output ON status

8-25

Section 8 Status Structure

8-26.

Section 9 Details on Device Messages

9.1

9.2

Main Framecccccveveeiiiiiieeen, 9-2
9.1.1 DISPlay:BRIGhtness 9-2
9.1.2 DISPlay[:STATE]....covvvveerrirans 9-2
9.1.3 SYSTem:BEEPer:STATe 9-3
9.1.4 SYSTem:CHANnel:STATe 9-4
9.1.5 SYSTem:COMMunicate:

GPIB:HEADccoovviviiiiiiee 9-4
9.1.6 SYSTem:COMMunicate:SERial:

HEAD ..o 9-5
9.1.7 SYSTem:DATE............... e 95
9.1.8 SYSTem:ERROr.........cccvvvvinnn 9-6
9.1.9 SYSTemM:TIME........ccovvevinnrnns 9-6
Optical SENSOrcoovvvvieiieiiiiiieeeee 9-7
9.2.1 ABORI[1|2]...cccccvviriiririiiiieninnn 9-7
9.2.2 FETCh[1]|2][:SCALar]:

POWErI:DC]ovvveiiieciiiieee 9-7
9.2.3 SENSe[1|2]:AVERage:COUNt... 9-8
9.2.4 SENSe[1|2]:BANDwidth.......... 9-8
9.2.5 SENSe[1|2]:BANDwidth:AUTO .. 9-9
9.2.6 SENSe[1|2]:CORRection:

COLLeCt:ZERO......cceeevvivrenee 9-9
9.2.7 SENSe[1|2]:CORRection

[LOSS[:INPut[:MAGNitude]]] ... 9-10
9.2.8 SENSe[1|2]:FETCh[:SCALar]:

POWer[:DC]:MAXimum 9-10
9.2.9 SENSe[1|2]:FETCh[:SCALar]:

POWer[:DCl:MINimum 9-11
9.2.10 SENSe[1|2]:FETCh[:SCALar]:

POWer[:DC]:PTPeak 9-11
9.2.11 SENSe[1|2]:FILTer:BPASSs:

FREQuUENCYooovviiiiiiis 9-12
9.2.12 SENSe[1|2]:INITiate

[[IMMediate]ccouvveeerninnnn. 9-12
9.2.13 SENSe[1|2]:MEMory:COPY

ENAME] oo 9-13
9.2.14 SENSe[1|2]:MEMory:DATa 9-13
9.2.15 SENSe[1|2]:MEMory:DATa:

INFO ..o 9-14
9.2.16 SENSe[1]|2]:POWer:INTerval... 9-15
9.2.17 SENSe[1]|2]:POWer:RANGe:

AUTO oo 9-15
9.2.18 SENSe[1]|2]:POWer:RANGe

[JUPPer] ..ot 9-16
9.2.19 SENSe[1]|2]:POWer:

REFerence..........cccccviiiiinnnns 9-16

9.3

9.4

9.2.20 SENSe[1|2]:POWer:REFerence:

DISPIAY ..cvveivieiiiciiiesieeieeie 9-17
9.2.21 SENSe[1|2]:POWer:REFerence:

STATE i 9-18
9.2.22 SENSe[1|2]:POWer:REFerence:

STATERATIO .ocovieiviiiiei 9-18
9.2.23 SENSe[1|2]:POWer:UNIT 9-19
9.2.24 SENSe[1|2]:POWer:

WAVelengthcccccooviiineens 9-20
9.2.25 SENSe[1|2]:POWer:WAVelength:

UNIT (e 9-20

9.2.26 SENSe[1|2]:TRIGger:COUNt... 9-21
9.2.27 SENSe[1|2]:TRIGger[:SEQuence]

[[IMMediate]ccvvveeerninnnn. 9-21
9.2.28 READ[L|2] ..cvvviiveiiiiiieiieee
9.2.29 READI1|2]:ABORt
Light SOUICecocoviiiiiiiieiiiiecc
9.3.1 SOURce[1|2]:AM[:INTerval]:

FREQUENCYooovviiiiiiiis 9-23
9.3.2 SOURce[1|2]:MEMory:COPY

ENAME] .o, 9-23
9.3.3 SOURce[1|2]:POWer:

ATTenuationcccceeeevineeene 9-24
9.3.4 SOURce[1|2]:POWer:STATe... 9-24
9.3.5 SOURce[1|2]:POWer:

WAVelengthcccccoovviiinens 9-25
9.3.6 SOURce[1|2]:POWer:

WAVelength:UNIToc... 9-25
Error Messages........cccccovcvvevieiininnnn. 9-26

9-1

Section 9 Details on Device Messages

9.1 Main Frame

9.1.1 DISPlay:BRIGhtness

@)

@)

®)

(4)

®)

9.1.2 DISPlay[:STATe]

@)

@)

®)

(4)

®)

Function
Brightness setting

Program message
DI SPI ay: BRI Ght ness <rati o>
DI SPI ay: BRI Ght ness?

Response message
DI SPLAY: BRI GHTNESS <r at i 0>

Parameter
<ratio> = {f|0.1 <f < 1.0}

Explanation
This command sets the brightness on the display.
When <ratio> is set to 0.1, the brightnessisthe lowest; whenitisset to 1, the
brightnessis the highest.
The brightness can be set in ten steps.
0.1 ~ <ratio> - 1

Dark Bright
Function
Turns ON/OFF the display

Program message
Dl SPl ay[: STATe] <sw>
DI SPI ay[: STATe] ?

Response message
DI SPLAY <st at us>

Parameter
<sw>: = {ON, OFF, 1, 0}
<status>:= {1, 0}

1o ON
0 v OFF
Explanation

This command switches the display/non-display of the display.

9-2

9.1 Main Frame

9.1.3 SYSTem:BEEPer:STATe

@)

@)

®)

(4)

®)

Function
Buzzer setting

Program message
SYSTem BEEPer : STATe <l evel >
SYSTem BEEPer : STATe?

Response message
SYSTEM BEEPER: STATE <l evel >

Parameter
<level >: = {0, 1, 2, 3, 4}

Explanation
This command sets the level of the buzzer sound.
The buzzer sound is set as shown below depending on <level>.

<level> Meaning
0 Buzzer OFF
1 Small Level
2
3
4 Large Level

9-3

Section 9 Details on Device Messages

9.1.4 SYSTem:CHANnel:STATe

@)

@)

®)

(4)

®)

Function
Inquires the inserted unit

Program message
SYSTem CHANnel : STATe?

Response message
SYSTEM CHANNEL: STATE <ui d> (@<uno>) {, <ui d> (@<uno>)}

Parameter
<ui d>:= {OPM OLS}
<uno>: = {1, 2}

Explanation

This command outputs the types and ID numbers for all units inserted cur-
rently. If no unitisinserted, "NOUNIT" isreturned as response data.

The unit typeisindicated with <uid> and it is interrupted as shown below.

<uid> Unit name

OPM Optical sensor unit
OoLS Light source unit

9.1.5 SYSTem:COMMunicate:GPIB:HEAD

@)

@)

®)

(4)

®)

Function
Specifies whether to attach a header

Program message
SYSTem COMMuUNI cat e: GPI B: HEAD <f| ag>
SYSTem COMMuUNI cat e: GPl B: HEAD?

Response message
SYSTEM COMMUNI CATE: GPI B: HEAD <st at us>

Parameter
<flag>: = {ON, OFF, 1, 0}
<status>:= {1, 0}

1o ON
0 e OFF
Explanation

This command specifies whether to attach a header to the response message
By default, no header is attached.

The same setting item exists in both GPIB and serial (SYSTem
:COMMunicate:GPIB:HEAD and SY STem:COMMunicate:SERial
‘HEAD). These are not independent of each other. Therefore, if oneitemis
set, the other is set to the same condition.

94

9.1 Main Frame

9.1.6 SYSTem:COMMunicate:SERial:HEAD

9.1.7 SYSTem:DATE

@)

@)

®)

(4)

®)

@)

)

®)

(4)

®)

Function
Specifies whether to attach a header

Program message
SYSTem COMMUnNI cat e: SERi al : HEAD <f | ag>
SYSTem COMMunNI cat e: SERi al : HEAD?

Response message
SYSTEM COVMUNI CATE: SERI AL: HEAD <st at us>

Parameter
<flag> = {ON OFF, 1, 0}
<status>:= {1, 0}

1o ON
(O I OFF
Explanation

This command specifies whether to attach a header to the response message.

Default does not attach a header.

The same setting item exists in both GPIB and serial (SYSTem
:COMMunicate:GPIB:HEAD and SY STem:COM Municate:SERial
‘HEAD). These items are not independent of each other. Therefore, if one

item is set, the other is set to the same condition.

Function
Sets the calendar

Program message
SYSTem DATE <year >, <npont h>, <day>
SYSTem DATE?

Response message
SYSTEM DATE <year >, <npont h>, <day>

Parameter

<year>:= {n| 1990 < n < 2089}
<month>:= {n|1 < n < 12}
<day>:= {n|1 < n < 31}

A

Explanation
This command sets the calendar of the system.

<year>, <month>, and <day> indicate year, month, and day, respectively.

9-5

Section 9 Details on Device Messages

9.1.8 SYSTem:ERRor

9.1.9 SYSTem:TIME

@)

@)

®)

(4)

@)

@)

®)

(4)

®)

Function
Inquires the error value

Program message
SYSTem ERRor ?

Response message
SYSTEM ERRCR <code>

Explanation

As aresponse to SY STem:ERRor, SCPI specifies the codes and messages
corresponding to the errors. The error messages supported by this product
are described in the Section 9.4 "Error Message.”

Function
Setsthetime

Program message
SYSTem TI ME <hour >, <m nut e>, <second>
SYSTem TI ME?

Response message
SYSTEM Tl ME <hour >, <m nut e>, <second>

Parameter

<hour>:= {n|0 < n < 23}
<m nute> = {n|0 < n < 59}
<second>:= {n|0 < n < 59}
Explanation

This command sets the clock of the system to the specified time.
Thetimeis specified in 24-hour unit. <hour>, <minute>, and <second> indi-
cate hour, minute, and second, respectively.

9-6

9.2 Optical Sensor

9.2 Optical Sensor

[1]2] indicates the channel number into which the optical sensor to be controlled

isinserted. If the optical sensor isinserted into Channel 1, it can be omitted. The

brackets ([]) are not required.

Example: ABORT1 FETCH2: SCALAR PONER: DC SENSE: CORRECTI ON
: COLLECT: ZERO etc.

9.2.1 ABORI[1|2]

(1) Function
Stops measurement

(2) Program message
ABORt [1] 2]

(3) Explanation
This command stops the logging.

9.2.2 FETCh[1|2][:SCALar]:POWer[:DC]

(1) Function
Inquires the measurement data

(2) Program message
FETCh[1| 2] [: SCALar]: POver[: DC] ?

(3) Response message
FETCHL| 2 <l evel >

(4) Parameter
<l evel >: = <NR3>

(5) Explanation
This command returns the current measurement data.
The unit of the measurement data may be dBm, W, or dB in accordance with
the current unit.

9-7

Section 9 Details on Device Messages

9.2.3 SENSe[1]2]:AVERage:COUN

@)

@)

®)

(4)

®)

Function
Sets the number of times of averaging

Program message
SENSe[1| 2] : AVERage: COUNt <count >
SENSe[1| 2] : AVERage: COUNt ?

Response message
SENSE1| 2: AVERAGE: COUNT <count >

Parameter
<count>: = {1, 2,5, 10, 20, 50, 100, 200, 500, 1000}

Explanation
This command sets the number of times of averaging in the averaging opera-
tion.

9.2.4 SENSe[1|2]:BANDwidth

@)

@)

®)

(4)

®)

Function
Sets the bandwidth

Program message
SENSe[1| 2] : BANDW dt h <bw> [<uni t >]
SENSe[1| 2] : BANDw dt h?

Response message
SENSE1| 2: BANDW DTH <bw>

Parameter
<bw>: = {0.1, 1, 10, 100, 1000, 10000, 20000, 100000} (Unit: Hz)
<uni t>: = {HzZ, KHz}

Explanation

This command sets the bandwidth to the value set in <bw>.
Some values cannot be set for <bw>depending on the unit.
In the program message, supplementary units may be used.
In the response message, the value is aways output in Hz.

9-8

9.2

Optical Sensor

9.2.5 SENSe[1]2]:BANDwidth:AUTO

@)

@)

®)

(4)

©)

Function
Sets the auto bandwidth

Program message
SENSe[1| 2] : BANDw dt h: AUTO <sw>
SENSe[1| 2] : BANDw dt h: AUTO?

Response message
SENSE1| 2: BANDW DTH: AUTO <st at us>

Parameter
<sw>: = {ON, OFF, 1, 0}
<status>:= {1, 0}

1 ON
0 OFF
Explanation

This command sets the bandwidth setting to auto.

9.2.6 SENSe[1]|2]:CORRection:COLLect:ZERO

1)

@)

®)

(4)

®)

Function
Executes zero-set

Program message
SENSe[1| 2] : CORRect i on: COLLect : ZERO
SENSe[1| 2] : CORRect i on: COLLect : ZERO?

Response message
SENSE1| 2: CORRECTI ON: COLLECT <result>

Parameter
<resul t>:= <NR1>

Explanation
This command executes zero-set.
The response message has the following value.

For the error code, refer to the Section 9.4 "Error Message.”

<result> State

0 Normal end

1 Zero-set from remote is not executed.

2 Zero-set is being executed.
Negative numberError

9-9

Section 9 Details on Device Messages

9.2.7 SENSe[1]2]:CORRection[:LOSS[:INPut[:MAGNitudel]]]

@)

@)

®)

(4)

©)

Function
Sets the calibration factor

Program message

SENSe[1| 2] : CORRect i on[: LOSS[: | NPut [: MAGNI t ude]]]
<cal >[DB]

SENSe[1] 2] : CORRection[: LOSS[: | NPut [: MAGNI tude]]]?

Response message
SENSE1| 2: CORRECTI ON: LOSS: | NPUT: MAGNI TUDE <cal >

Parameter
<cal > = {f]| -199.99 < n < 199.99}

Explanation
This command sets the calibration factor to <cal>.
<cal> isaways accepted in dB. The unit may be omitted.

9.2.8 SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:MAXimum

@)

@)

®)

(4)

®)

Function
Reads the maximum value

Program message
SENSe[1| 2] : FETCh[: SCALar] : POWer [: DC] : MAXi nunf

Response message
SENSEL1| 2: FETCH: SCALAR: POVER: DC: MAXI MUM <I evel >

Parameter
<l evel >: = <NR3>

Explanation

This command outputs the maximum value of the measured data during the
period from the start of statistical measurement up to now.

The unit of the measurement data is dBm or W in accordance with the
present measurement value.

9-10

9.2 Optical Sensor

9.2.9 SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:MINimum

@)

@)

®)

(4)

®)

Function
Reads the minimum value

Program message
SENSe[1| 2] : FETCh[: SCALar] : POAér [: DC] : M Ni munf?

Response message
SENSEL1| 2: FETCH: SCALAR: PONER: DC: M NI MUM <I evel >

Parameter
<l evel >: = <NR3>

Explanation

This command outputs the minimum value of the measurement data during
the period from the start of statistical measurement up to now.

The unit of the measured datais dBm or W in accordance with the present
measured value.

9.2.10 SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:PTPeak

1)

@)

®)

(4)

®)

Function
Reads the difference between the maximum and minimum values

Program message
SENSe[1| 2] : FETCh[: SCALar] : POWer [: DC] : PTPeak?

Response message
SENSEL1| 2: FETCH: SCALAR: PONER: DC: PTPEAK <I evel >

Parameter
<| evel >: = <NR3>

Explanation

This command outputs the difference between the maximum and minimum
values of the measurement data during the period from the start of statistical
measurement up to now.

The unit of the measurement datais dB.

9-11

Section 9 Details on Device Messages

9.2.11 SENSe[1|2]:FILTer:BPASs:FREQuency

(1) Function
Sets the modul ation frequency

(2) Program message
SENSe[1] 2] : FI LTer : BPASs: FREQuency CW <freq>[<uni t >]
SENSe[1| 2] : FI LTer : BPASs: FREQuency?

(3) Response message
SENSEL1| 2: FI LTER: BPASS: FREQUENCY <freq>

(4) Parameter
<freqg>:= {0, 270, 1000, 2000} (Unit: HZ)
<uni t>: = {HZ, KHzZ}

(5) Explanation
This command sets the modul ation frequency to be measured.
If the unit of <freg> is omitted, Hz is assumed. If the unit is specified in
<unit>, set in the unit.
For 0 Hz, CW is set.
The response message is always output in Hz.

9.2.12 SENSe[1|2]:INITiate[:IMMediate]

(1) Function
Starts the logging

(2) Program message
SENSe[1] 2] : I NI Ti at e[: | Mvedi at €]

(3) Explanation
This command makes the measurements by the number of times specified.
The number of timesis set in "SENSe: TRIGger: COUNt."

9-12

9.2 Optical Sensor

9.2.13 SENSe[1]2]:MEMory:COPY[:NAME]

1)

)

®)

(4)

Function
Stores/Reads the measurement conditions

Program message
SENSe[1| 2] : MEMory: COPY[: NAME] MC, <no>| <no>, MC

Parameter
<no>:= {0,1,2,3,4,5,6,7,8,9}

Explanation

This command stores or reads the measurement conditions using the memory
number specified with <no>.

"MC, <no>" stores the measurement condition and "'<no>, MC" reads the mea-
surement condition.

If "0" is specified for <no>, only reading is effective because it is the initial
condition setting.

9.2.14 SENSe[1|2]:MEMory:DATa

1)

)

®)

(4)

Function
Reads the logging data

Program message
SENSe[1] 2] : MEMory: DATa? M, <start>[, <nunber >]]

Response message
SENSE1| 2: MEMORY: DATA <nunber >{, <l evel >} 0

Explanation

This command reads the logging data.

<start> and <number> indicate the starting point of reading and the number of
dataitems to be read, respectively. If these are omitted, operation is started
with <start> as 1 and <number> as the number of dataitems measured.

For <start>, avalue larger than the number of dataitems measured cannot be
specified. For <number>, the number of data items measured or a number
larger than the number of dataitems measured after <start> may be specified.
However, the number of dataitemsthat can be taken out isthe effective number
of dataitems.

For the response message, the number of dataitems actually taken out and the
measurement data of these dataitems are output. Though the measurement
data does not have a unit, it is the unit used when it is recorded (dBm or W).
This unit can be known from "SENSe:MEMory:DATaINFO." If theunitis
W, the exponential notation is used instead of the supplementary unit.

If no measurement data exists, the response message only with <number> as
"0" is output.

9-13

Section 9 Details on Device Messages

9.2.15 SENSe[1]2]:MEMory:DATa:INFO

@)

@)

®)

(4)

Function

Logging data information

Program message

SENSe[1| 2] : MEMor y: DATa: | NFO?

Response message
SENSE1| 2: MEMORY: DATA: | NFO V1. 0, " <i nf o>"

Explanation

This command reads the detailed information of the logging data.

"V1.0" at the head of the response messageis used to identify the succeeding
information. At present, only "V1.0" used.

In <info>, the following information are listed and separated by a semi-colon

G)-

Information

Description

unit model name
measurement date/time

averaging count

interval time
measurement data count
data unit

statistical data

the model name of the unit measured

the date and time of measurement are described as shown below:
YY/MM/DD, hh:mm:ss

the number of times of averaging made at the time of measure-

ment

measurement interval used at the time of measurement

the number of data items measured

"DBM" or "W"

alist of the maximum value, minimum value, peak-to-peak

value, and average value separated by acommac(,).

Thought the units of these values are omitted, these are output in the values
in accordance with the units of the data. If the dataunitis"DBM," the maxi-
mum value, minimum value, and average value are output in dBm and the
peak-to-peak value is output in W. If the data unit is"W," the maximum
value, minimum value, and average value are output in W and the peak-to-
peak valueis output in %.

When the dataunit is"W," the watt value described in the exponential nota-
tion instead of the supplementary unit.

If no measurement data exists, the response message is output with <info> as
ablank.

SENSE1: MEMORY: DATA: | NFO V1.0, ""

9-14

9.2 Optical Sensor

9.2.16 SENSe[1|2]:POWer:INTerval

@)

@)

®)

(4)

®)

Function
Sets the measurement interval

Program message
SENSe[1| 2] : POWer : | NTerval <ti nme>
SENSe[1| 2] : POWér : | NTer val ?

Response message
SENSE1| 2: PONER: | NTERVAL <ti ne>

Parameter
<time>: = {f]0.001 < f < 359999}

Explanation
This command sets the measurement interval.
The parameter <time> is set in seconds and rounded off to the resolution.

9.2.17 SENSe[1]|2]:POWer:RANGe:AUTO

1)

)

®)

(4)

®)

Function
Sets the auto range

Program message
SENSe[1| 2] : POVér : RANGe: AUTO <sw>
SENSe[1| 2] : POVér : RANGe: AUTO?

Response message
SENSE1| 2: POAER: RANGE: AUTO <st at us>

Parameter
<sw>: = {ON, OFF, 1, 0}
<status>:= 1,0

1o, ON
L0 JRUTN OFF
Explanation

This command specifies whether to set the measurement range to auto.
If "ON" or "1" is set, automatic setting is valid.
If "OFF" or "0" is set, automatic setting isinvalid.

9-15

Section 9 Details on Device Messages

9.2.18 SENSe[1|2]:POWer:RANGe[:UPPer]

@)

@)

®)

(4)

®)

Function
Sets the manual range.

Program message
SENSe[1] 2] : POVer : RANGe[: UPPer] <l evl e>[DBM
SENSe[1] 2] : POVr : RANGe[: UPPer] ?

Response message
SENSE1| 2: PONER: RANGE: UPPER <I evel >

Parameter
<l evel >: = {40, 30, 20, 10, 0, -10, —20, —30, —-40, -50, —60,
-70, -80, -90, —-100, —110}

Explanation

This command makes measurement with the measurement range fixed to
<level>.

Since <level> is dependent on the unit, some values may not be set in some
units.

For the unit, only "DBM" is accepted. The unit can be omitted.

9.2.19 SENSe[1|2]:POWer:REFerence

@)

@)

®)

(4)

Function
Sets the reference value.

Program message
SENSe[1| 2] : POVer : REFerence <type>, <l evel >[<uni t >]
SENSe[1| 2] : POVer : REFer ence? <type>

Response message
SENSEL1| 2: PONER: REFERENCE <l evel >

Parameter

<type>: = {TOA TOB, TOREF, 0, 1, 2}

When "TOREF" or "2":

<level> = {f(W]1 x 10 < f < 99.999}
<level >: = {f(dBm| -199.999 < f < +199. 999}
<uni t>: = {PW NW UW MW W DBM

When "TOA" or "0," and "TOB" or "1"

<level > = {f(dB)| -199.999 < f < 199. 999}
<uni t>: = {DB}

9-16

9.2 Optical Sensor

®)

Explanation

This command sets the reference value at the reference measurement time.
"TOREF" setsthe specified level value as the reference value of the channel.
It can be used in both SENSel and SENSe2.

The reference value can be set in W or dBm. If the unit is omitted, dBmis
assumed. If the unit is specified as "W," the values from 0.0001 pW to
99.999 W can be set; if the unit is specified as "DBM," the values from —
199.999 dBm to +199.999 dBm can be set.

"TOA" and "TOB" are effective only when two optical sensor units are in-
serted, and the reference value for the difference in level s between two chan-
nelsisset. Inthis case difference in level — standard value is displayed.
(Where, standard value = reference value + relative value)

The reference value can be set only in dB. Therefore, when adding a unit,
only "DB" iseffective. "TOA" and "TOB" are effective only for "SENSe2"
and "SENSel," respectively.

When "TOA" or "TOB" is specified, the response message is always re-
turned in dB.

When "TOREF" is specified, the response message isreturned in W or dBm
in accordance with the current unit.

9.2.20 SENSe[1|2]:POWer:REFerence:DISPlay

@)

)

®)

Function
Displays the relative value.

Program message
SENSe[1| 2] : POVer : REFer ence: DI SPI ay

Explanation

Relative values that make the display value set to 0 dB is set and values are
displayed in relative value display.

Since this command displays rel ative measurements with the current display
value as 0 dB, it can be set even in the absolute value display and reference
value display. The display value can be obtained by the following expres-
sion.

display value = measurement value — reference value —relative value

If the absolute value display is changed to the relative value display, the
reference value istreated as 0.

9-17

Section 9 Details on Device Messages

9.2.21 SENSe[1|2]:POWer:REFerence:STATe

@)

@)

®)

(4)

(®)

Function
Turns ON/OFF the reference measurement

Program message
SENSe[1| 2] : POVer : REFer ence: STATe <sw>
SENSe[1| 2] : POWer : REFer ence: STATe?

Response message
SENSEL1| 2: PONER: REFERENCE: STATE <st at us>

Parameter
<sw>: = {ON, OFF, 1, 0}
<status>:= {1, 0}

1 ON
0 OFF
Explanation

The command sets ON/OFF of the reference measurement.

9-18

9.2 Optical Sensor

9.2.22 SENSe[1|2]:POWer:REFerence:STATe:RATIO

1)

)

®)

(4)

®)

Function
Reference selection

Program message
SENSe[1| 2] : POWer : REFer ence: STATe: RATi o <sel >
SENSe[1| 2] : PONér : REFer ence: STATe: RATI 0?

Response message
SENSE1| 2: PONER: REFERENCE: STATE: RATI O <st at us>

Parameter
<sel >: = {TOA TOB, TOREF, 0, 1, 2}
<status>:= {0, 1, 2}

(O TN TOA
1o TOB

2 e TOREF
Explanation

This command sets the method of the reference measurement.
With <sel>, specify the reference measurement method as shown below.

<sel>

Measurement method

TOA (0)
TOB (1)
TOREF (2)

(measurement value of Channel 2) — (measurement value of Channel 1)
(measurement value of Channel 1) — (measurement value of Channel 2)
(measurement value of specified channel) — (standard value)

Where, the standard valueis (reference value) + (relative value).
"TOA" and "TOB" are effective only for "SENSe2" and "SENSel," respectively.
"TOREF" is effective for both SENSel and SENSe2.

9.2.23 SENSe[1|2]:POWer:UNIT

@)

@)

®)

(4)

®)

Function
Switches the unit system

Program message
SENSe[1] 2] : POAér: UNI T <unit >
SENSe[1| 2] : POVer : UNI T?

Response message
SENSE1| 2: PONER UNI T <uni t >

Parameter
<unit>: = {DBM W

Explanation
This command switches the display unit system of the optical power mea-
surement.

9-19

Section 9 Details on Device Messages

9.2.24 SENSe[1|2]:POWer:WAVelength

@)

@)

®)

(4)

®)

Function
Specifies the wavelength

Program message
SENSe[1| 2] : POVeér : WAVel engt h <wavel engt h>[<uni t >]
SENSe[1] 2] : POVér : WAVel engt h?

Response message
SENSE1| 2: POAER: WAVELENGTH <wavel engt h>

Parameter

<wavel ength>: = {f(m)| 380 x 10° < f < 1800 x 10-°%
<wavel engt h>: = {f(Hz)| 166. 551 x 10 < f < 788.927 x
102}

<unit> = {NM UM M Hz}

Explanation

This command sets the wavelength compensation to the wavelength of
<wavelength>.

The setting range and resol ution of the wavelength are dependent on the op-
tical sensor unit.

If the unit is omitted in the program message, m is assumed.

The response message is output in accordance with current unit system (m or
HZ).

9.2.25 SENSe[1|2]:POWer:WAVelength:UNIT

@)

@)

®)

(4)

®)

Function
The display unit of the wavelength

Program message
SENSe[1] 2] : POVér: WAVel engt h: UNI T <uni t >
SENSe[1] 2] : POVér : WAVel engt h: UNI T?

Response message
SENSE1| 2: PONER: WAVELENGTH: UNI T <uni t >

Parameter
<uni t>:= {M HzZ}

Explanation
This command switches the display unit of the wavelength.

9-20

9.2 Optical Sensor

9.2.26 SENSe[1|2]:TRIGger:COUNt

@)

@)

®)

(4)

®)

Function
Sets the number of times of measurement

Program message
SENSe[1| 2] : TRI Gger : COUNt <count >

Response message
SENSEL1| 2: TRI GGER: COUNT <count >

Parameter
<count>:= {n|1 < n < 1000}

Explanation
Sets the number of logging data items.

9.2.27 SENSe[1]2]:TRIGger[:SEQuence][:IMMediate]

@)

@)

®)

Function
Re-start the statistical measurement.

Program message
SENSe[1| 2] : TRI Gger [: SEQuence] [: | MMedi at e]

Explanation
This command measures the minimum, maximum, and peak-to-peak values
of the measurement data.

9-21

Section 9 Details on Device Messages

9.2.28 READ[1/2]

(1) Function
Starts the high-speed transfer mode

(2) Program message
READ[1| 2] ?

(3) Response message
<l evel >

(4) Parameter
<l evel >: = <NR3>

(5) Explanation
The mode is switched to the high-speed transfer mode and the current mea-
surement data is returned at high-speed.
Data is transferred at a higher speed than FETCh[1|2][:SCALar]
:POWer[:DC]. The measurement datais an absolute value in dBm units.
The high-speed transfer mode is turned ON when this command is executed
once. During the high-speed transfer mode, commands other than read out
and high-speed transfer mode end command are invalid. To end the high-
speed transfer mode, use READ[1|2]:ABORt command (refer to Section
9.2.29.) Inthe high-speed transfer mode only one channel isvalid. A sample
program is shown in Section 10.2.

9.2.29 READ[1]2]:ABORt
(1) Function
Stops the high-speed transfer mode

(2) Program message
READ] 1| 2] : ABORt

(3) Explanation
This command stop the high-speed transfer mode.

9-22

9.3 Light Source

9.3 Light Source

[1]2] indicates the channel number into which the light source to be controlled is
inserted. If the optical sensor isinserted into Channel 1, it can be omitted. The
brackets ([]) are not required.

Examples SOURCE1: PONER: STATE ON SOURCE2: POVER: STATE?

SOURCE: PONER: STATE 0 etc.

9.3.1 SOURce[1]|2]:AM[:INTerval]:FREQuency

1)

@)

®)

(4)

®)

Function
Sets the modulation frequency

Program message
SOURce[1] 2] : AM : | NTerval] : FREQuency CW <freq>[<uni t>]
SOURce[1] 2] : AM : | NTer val] : FREQuency?

Response message
SOURCEL| 2: AM | NTERVAL: FREQUENCY <freq>

Parameter
<freg>: = {0, 270, 1000, 2000} (Unit: Hz)
<unit>: = {HzZ, KHzZ}

Explanation

This command sets the optical output to CW or the modulation frequency
specified in <freg>.

If the unit of <freg> is omitted, Hz is assumed. If the unit is specified in
<unit>, it is set in the specified unit. For 0 Hz, CW is set.

The response message is aways output in Hz.

9.3.2 SOURce[1|2]:MEMory:COPY[:NAME]

1)

@)

®)

(4)

Function
Stores/reads the measurement conditions

Program message
SCQURce[1| 2] : MEMory: COPY[: NAME] MC, <no> | <no>, MC

Parameter
<no>:= {0,1,2,3,4,5,6,7,8,9}

Explanation

This command stores or reads the measurement conditions using the
memory number specified with <no>.

"MC, <no>" stores the measurement condition and "<no>, MC" reads the
measurement condition.

If "0" is specified for <no>, only reading is effective because it is theinitial
condition setting.

9-23

Section 9 Details on Device Messages

9.3.3 SOURce[1]|2]:POWer:ATTenuation

@)

@)

®)

(4)

®)

Function
Sets the attenuation

Program message
SOURce[1| 2] : PONer : ATTenuat i on <I| evel >[DB]
SOURce[1| 2] : PONer : ATTenuat i on?

Response message
SOURCEL| 2: PONER: ATTENUATI ON <l evel >

Parameter
<l evel >:= {f(dB)|0.00 < f < 6.00}

Explanation

This command reduces the optical output from the maximum output level by
the value specified in <level>.

The setting range and the setting resolution of <level> are dependent on the
light source unit.

<level> isrounded off to the setting resolution.

The attenuation is always output in dB. The unit may be omitted.

9.3.4 SOURce[1|2]:POWer:STATe

@)

@)

®)

(4)

®)

Function
Sets the optical output

Program message
SQURce[1| 2] : POWer : STATe <sw>
SQURce[1| 2] : POWer : STATe?

Response message
SOURCEL| 2: PONER: STATE <st at us>

Parameter
<sw>: = {ON, OFF, 1, 0}
<status>:= {1, 0}

1 ON
0 OFF
Explanation

This command sets ON/OFF of the optical output.

9-24

9.3 Light Source

9.3.5 SOURce[1|2]:POWer:WAVelength

@)

@)

®)

(4)

®)

Function:
Sets the wavelength

Program message

SOURce[1| 2] : POWer : WAVel engt h UPPer | LOWer | CENTer
| <wavel engt h>[<uni t >]

SOURce[1| 2] : POVNer : WAVel engt h?

Response message
SOURCEL| 2: PONER: WAVELENGTH <wavel engt h>

Parameter

<wavel ength>: = {f(m)|380 x 10° < f < 1800 x 10}
<wavel engt h>: = {f (HZ) | 166. 551 x 10> < f < 788.927 x 10'?}
<unit>:= {NVM UM M HZ}

Explanation

Thiscommand sets the wavelength to <wavelength>.

The range and the resol ution of the wavelength are dependent on the light source
unit. Theactua setting isrounded off to the resolution.

If theunit isomitted in the program message, mis assumed.

If aunit isattached, set in the unit.

The response message is output in accordance with current unit system (m or HZ).
"UPPer" or "LOWer" can be specified as a parameter only for atwo-wavelength
light source. To"UPPer" and "LOWer," thewavelengths of thelong wave and short
wave are set, respectively.

Even if the wavelength setting is"UPPer" or "LOWer," the response message re-
turnsthe wavelengths of the long wave and short wave.

"CENTer" can be specified as a parameter only for a DFB-LD light source. To
"CENTer", the center wavelength (default condition) is s&t.

9.3.6 SOURCce[1]|2]:POWer:WAVelength:UNIT

@)

@)

®)

(4)

®)

Function
The display unit of the wavelength

Program message
SCQURce[1] 2] : PONer : WAVel engt h: UNI T <uni t >
SCQURce[1| 2] : PONér : WAVel engt h: UNI T?

Response message
SCQURCEL| 2: PONER: WAVELENGTH: UNI T <uni t >

Parameter
<unit>:= {M Hz}

Explanation
This command switches the display unit of the wavelength.

9-25

Section 9 Details on Device Messages

9.4 Error Messages

(1) Command errors [-100 to -199]
The error codes [-100 to -199] indicate the occurrence of syntax errorsin
|IEEE 488.2. At thistime, bit 5in the event status register is set.
These errors areissued if any of the following events occur.
(8 The device received amessage against the |EEE 488.2 standard.
(b) The device received a header that does not conform to the regulation of

the device specific commands or the common commands.

(c) GET (Group Execute Trigger) was sent to a program message.

Code Message Error detecting condition
-101 Invalid character Invalid characters are included in the header or parameter.
-104 Datatype error The parameter type is different from that of the specified type.
-105 Get not allowed GET (Group Execute Trigger) was sent to a program message.
-108 Parameter not allowed The number of parametersis larger than the specified number.
-112 Program mnemonic too long The program mnemonic consists of more than 12 characters.
-113 Undefined header Though the syntax of the header is correct, it is not defined in the device.
-120 Numeric data error Thereisan error in the numeric data.
-121 Invalid character in number Aninvalid character isincluded in the numeric data.
-130 Suffix error Thereisan error in the suffix.
-144 Character datatoo long The character data consists of more than 12 characters.

(2) Execution time error [-200 to -299]

The error codes [-200 to -299] indicate the occurrence of errorsin the execution

control unit of the device. If an error of thistype occurs, bit 4 in the event status

register is set.

These errors are issued if any of the following events occur.

(8 <PROGRAM DATA> following the header is out of the regulation of
the device.
(b) The program message cannot be executed due to the state of the device.
Code Message Error detecting condition
-220 Parameter error Thereis an error in the parameter.
) . Though the parameter is correct, it cannot be executed due to the
-221 Setting conflict .
state of the device.

-222 Data out of range The numeric datais out of the regulation of the device.
-224 Illegal parameter value Thereceived parametersisillegal.
-240 Hardware error The command cannot be executed due to the hardware failure.

9-26

9.4 Error Messages

(3) Device specific error [-300 to -399]

The error codes [-300 to -399] indicate the occurrence of errors other than
command, query, and execution errors. These errors include the failure of
hardware/firmware and self-diagnosis errors.

If an error of thistype occurs, bit 3 in the event status register is set.

Code Message Error detecting condition
-310 System error An error occurred in the system.
-315 Configuration memory error Resume memory islost.
-350 Queue overflow There was an abnormality in self-diagnosis.
(4) Query error [-400 to -499]
The error codes [-400 to -499] indicate the occurrence of errors concerning
the message exchange control protocol in the output queue control. If an
error of thistype occurs, bit 2 in the event status register is set.
These errors are issued if any of the following events occur.
(8 Reading is executed from the output queue when there is no output.
(b) Thedatain the output queueislost.
Code Message Error detecting condition
. Before the device completes the transmission of the response mes-
-410 Query interrupted .
sage, an interrupt by a new command occurred.
-420 Query unterminated No query corresponding to the response message to be read is sent.
430 Query deadiocked An attempt is made to buffer the data exceeding the free area in

the storage.

9-27

Section 9 Details on Device Messages

9-28.

Section 10 Program Example

This section describes the creation of the remote control program.

This chapter shows an example of program created using Visual BASIC. For
GPIB, the use of National Instrument's hardware and the NI-488.2M softwareis
assumed. For the handling of Visual BASIC and NI-488.2M, see the individual
operation manuals.

10.1 Precaution on Creating a Programmingc.ccccceveeeeeniinnnnn. 10-2
10.2 Program EXamplesccceiiiiiieiiiieiiicesee e 10-3

10-1

Section 10 Program Example

10.1 Precaution on Programming

On the creating aremote control program, precaution the pointsin the Table 10-1.

(RS-2320).

Table 10-1
No. Precaution Description
Devices may be in various states after the device has been operated by
its own operating panels and other programs. In many cases, its states
1 Be sureto initialize device. P 9P prog Y .
may not be proper at the start of use. Therefore, these devices must be
initialized to be able to use under certain conditions.
.) If MLA is received when a command other than areading command is
Immediately after sending a)
serv. do not send an sent to the controller before reading the query result, the output buffer
2 query, Y is cleared, resulting in the loss of the response message. Therefore, be
command other than result . i . .
readin sure to describe the result reading command immediately after read-
g ing.
3 Avoid exception handling in | Expected exceptions must be handled in the exception handling sec-
the protocol. tion in the program so that execution does not stop due to errors.
Check interface functions | If acreated program is executed for a device that does not have a sub-
4 (subset) of individual devices | set, processing will not proceed. Be sure to check subsets of devices.
(GPIB). Also check that the device conformsto |EEE 488.2.
The RS-232C interface has a 256 byte data area as an internal receive
buffer. However, overflow may occur depending on the processing
e. To prevent errors form occurring due to overflow, do not send a
Prevent buffer overflow typ P g . .
5 large volume data (control commands) at a time when performing rem-

ote control using an RS-232C interface. After sending a sequence of
commands, send the "OPC?' command, wait for a response to be
received, then send the next command for synchronization.

10-2

10.2 Program Examples

10.2 Program Examples

(1) Reading the measurement data of the optical sensor unit.
Insert aoptical sensor unit into Channel 1 of the MT9810B to measure the
optical power of the external light source.
Read the measurement data with GPIB and display the result.
The GPIB address of the MT9810B is 15.

. Formi

Sub cndf etch_Cick() il
Dim bufl As StringlR20 %
Call Send(0, 15, " SYSTEM COVWUNI CATE: GPI B: HEAD 0", NLend) B
Call Send(0, 15, " SENSE1: PONER: UNI T DBM', NLend) 4
Call Send(0, 15, "FETCHL: SCALAR PONER: DC?", NLend) b
Cal | Receive(0, 15, buf 1, STOPend) B
| bl Pwr. Capti on=buf 1 o

End Sub [8

B-4 OTSinitial setting

[b-[b Datareading

o Result output

10-3

Section 10 Program Example

(2) Reading the measurement data of the optical sensor unit. (High-speed trans-
fer mode)

Insert aoptical sensor unit into Channel 1 of the MT9810B to measure the
optical power of the external light source.

Read out the measurement data at 1000 times with GPIB and display the
result.

The GPIB address of the MT9810B is 15.

. Formi

SSub cmdf etch_C i ck() il
Dim bufl As Stringl20 %
Call Send(0, 15, "READ1?", NLend) B
For 1=0 To 1000 4

Cal | Receive(0, 15, buf 1, STOPend) b
| bl pwr . Capti on=buf 1 b
Next | o
Call Send(0, 15, "READL: ABOR', NLend) 8

End Sub M

B Switching to the high-speed transfer mode

M- Reading out the data 1000 times and indicating it.

B Ending high-speed transfer mode

10-4

10.2 Program Examples

(3) Measure the attenuator value of the light source unit using a optical sensor.
Insert the light source unit and the optical sensor unit into Channel 1 and
Channel 2, respectively, of the MT9810B and connect these units using opti-
cal fibers. Measure the relative value of attenuation while changing the at-
tenuator value of the light source unit one after another using the optical
sensor unit and display the result.

The GPIB address of the MT9810B is 15.

Sub cndstart_Cick() il
Dimbufl As Stringll5 2
DimstrAttStep As Stringlb B
DimstrAttStop As Stringlb B
DimstrAtt As Stringlb b
Dim sgl Att Step As Single b
Dim sgl Att Stop As Single g
Dimsgl Att As Single B
chr Att St ep=t xt St ep. Text ®
chr Att St op=t xt St op. Text 1o
sgl Att St ep=val (chrAtt St ep) 11

10-5

Section 10 Program Example

sgl Att St op=val (chr Att St op) 2
Call Send(0, 15, " SOURCEL: PONER: STATE 1", NLend) m3
Cal | Send(0, 15, " SOQURCEL: POAER: ATTENUATI ON 0", NLend) 4
Cal | Send(0, 15, "FETCH2: SCALAR: POAER: DC?", NLend) 5
Cal | Receive(0, 15, buf 1, STOPend) me
I bl Resul t. Caption="ATT=0.0 dB PO="+bufl iy
Cal | Send(0, 15, " SENSE2: POAER: REFERENCE: DI SPLAY", NLend) ms
sgl Att =sgl Att St ep 19
Do 20
chrAtt=str(sgl Att) 21
Cal | Send(0, 15, " SOURCEL: POAER: ATTENUATI ON" +chr At t , NLend) (2
Cal | Send(0, 15, "FETCH2: SCALAR: POAER: DC?", NLend) 23
Cal | Receive(0, 15, buf 1, STOPend) 24
I bl Resul t. Capti on=I bl Resul t. Capti on+chr (13) 25
| bl Resul t. Capti on=I bl Resul t. Capti on+"ATT="+chrAtt+"dB Pr="+bufl [26
sgl Att=sgl Att + sglAttStep p7
If sglAtt > sgl AttStop Then 28
Exit do 29
End If B0
Loop [B1
End Sub B2
m3 Turns ON the optical output of the light source unit.
4 Sets the attenuation of the light source unit to O dB.
15- 16 Measures the power using the optical sensor unit.
7 Displays the measurement result.
18 Sets the optical sensor unit to the relative value measurement mode.
(22 Sets the attenuation of the light source unit.
[(23- 24 Measures the power using the optical sensor unit.

[(25- 26 Displays the measurement result.
[(28- [BO Judges the repetition condition.

NOTE:
In the actual measurement, insert awaiting time of around five seconds
between [114 and (115 and between [22 and [23 in order to stabilize the
output of the light source unit.

10-6.

Section 11 LabVIEW Drivers

This section explains the measuring instrument drivers (MX981001A) used to
control the MT9810A remotely under LabVIEW.

LabVIEW drivers are modulesin which command send and receive functions are
incorporated, allowing measuring instruments to be controlled under the U.S.
National Instruments Graphic Programming System "LabVIEW." Using these
drivers, the MT9810A can be remotely controled without remembering control
commands.

To use this drivers, a controller in which National Instruments LabVIEW soft-
ware (Windows version) isinstalled is required.

The drivers have been created using LabVIEW Ver. 4.1 (Windows version).
Refer to the LabVIEW User's Guide for how to use LabVIEW.

LabVIEW isatrademark of U.S. National Instruments Corporation.

Windows is atrademark of U.S. Microsoft Corporation.

ADOUL LADVIEW ...t
12,1 INSLAlALION ...eeeeeiiii e
11.2 Program EXample ...
11.3 List Of LADVIEW DFEIVEISoeiiiiiiiiiiiieeiiiiiieee e
11.4 Description of LabVIEW Driver Functions

11.4.1 Common Parametersccccceeeeeeininiiisiiisiiiiiies

11.4.2 Description of functionsccoocuiviiiiiiiiiiiiee e,

11-1

Section 11 LabVIEW Drivers

About LabVIEW

11.1 Installation

LabVIEW is agraphical program language suitable for controlling measuring
instruments and saving and analyzing data.

LabVIEW to creates a program like drawing acircuit diagram, so it iseasier to get
used to compared with text-based program languages. The execution speed is
amost the same as the C language.

LabVIEW supports various libraries related to measuring instrument control and
data saving, analysis, and display. Using LabVIEW and measuring instrument
drivers, the graphical user interface (GUI) program can be created easily.

The following file is stored in the attached floppy disk MX981001A.
Mrog10. LLB

Installation example

(1) OnX:LABVIEW ("X" isthe drive name on which LabVIEW isinstalled),
create adirectory "MT9810.LIB."

(2) Copy thefile MT9810.LLB to this directory.

11-2

11.2 Program Example

11.2 Program Example

I i -
IE examplel v Diagram *

File

This section gives examples of programs created using the LabVIEW driver.
This section creates a program of optical power measurement using GPIB control
in the same manner as the Section "10.2 Program example 1." In this program
example, the GPIB address of the MT9810A is 15.

This section uses the following four drivers.

MT9810 Initialize(GPIB).vi Preparation for communication using GPIB

MT9810 Config.Sensor.vi ~ Setting of the optical sensor unit

MT9810 Sensor.Fetch.vi Reading of the measurement data from the optical
sensor unit

MT9810 Error.message.vi Displaying of the error message

(1) Arranging the driversin the block diagram
Arrange the above driversin order.

Edit Operate Project Windows Help e

I ?Il%i' I@l I I ;@I 12pt &pplication Font |+J:l__| I.u-

:"}?.8 Il? H?ﬁ?‘.ﬂ-r H?tﬁulslg-r |'|ET3 210
EIIIEEIIIEIF-ZF Canfigl Futch "r‘-:.'-'lr;g

11-3

Section 11 LabVIEW Drivers

(2) Arranging controllers and displays on the front panel window.
Double-clicking on the icon of MT9810 Initialize(GPIB).vi on the diagram
window will open the LabVIEW driver window. Copy the controllers sub-
ject to GPIB address input from this window onto the front panel window.
In the same manner, copy the displays for displaying measurement datafrom
theicon of MT9810 Sensor.Fetch.vi.

11-4

11.2 Program Example

(3) Connecting displays, controllers, and icons.
Connect driver terminals with wires as shown below.

I 5 5
IE examplel v Diagram *

|:[>| '_Q—}I %i' I@” I I il 12pt &pplication Font _”+J:l_“'|]- 1

hanne! (1)

PIE address (18)

File Edit Cperate Project Windows Hslp @%}

e LI nrae10
Configh Fetch "fsq
Readin
—[DEL]

11-5

Section 11 LabVIEW Drivers

11.3 List of LabVIEW Drivers

The file name of the LabVIEW driver VI is MT9810 (function name).vi.
The common drivers are used for GPIB and RS-232C, excluding (Initialize).

Table 11-1 Sample/utility

File name Function
MT9810 VI treevi Loading al drivers
MT9810 Examplel.vi Simple program example
MT9810 Example2.vi Simple program example
MT9810 Example3.vi Simple program example
MT9810 Interactive.vi Communication in device message level
MT9810 Error Message.vi Error code and detailed information

Table 11-2 Main frame

File name Function
MT9810 Initialize(GPIB).vi GPIB preparation
MT9810 Initialize(RS232C).vi RS-232C preparation
MT9810 Reset.vi Main frame resetting
MT9810 Self-Test.vi Internal self-test
MT9810 Config Instrument.vi Main frame parameter setting/query

Table 11-3 Optical sensor unit

File name Function
MT9810 Config Sensor Zeroing.vi Zero-set
MT9810 Config Sensor_1.vi Parameter setting/query
MT9810 Config Sensor_2.vi Parameter setting/query
MT9810 Config Sensor Wavelength.vi M easurement wavel ength setting/query
MT9810 Config Sensor Ranging.vi Measurement range setting/query
MT9810 Config Sensor Reference.vi Reference measurement setting/query and execution/stop
MT9810 Sensor Fetch.vi Measurement data query
MT9810 Config Logging Parameter.vi L ogging execution/stop
MT9810 Read Logging Values.vi Outputting logging data
MT9810 MinMax Values.vi Resetting or output of measurement data of maximum/minimum values

Table 11-4 Light source unit

File name Function
MT9810 Config Source.vi Parameter setting/query
MT9810 Config Source Output.vi ON/OFF of optical output

11-6

11.4 Description of LabVIEW Driver Functions

11.4 Description of LabVIEW Driver Functions

This section explains functions and input/output parameters of LabVIEW drivers.
The LabVIEW driver receives data and setting values through the terminals on
the left of the icon, performs the specified processing according to the input pa-
rameters, and outputs the processing results through the terminals on the right
side of theicon.

<Input parameter> <Output parameter>
channel (1)
instr handle in instr handle out
SRESI™ 1L Reading
) Fetch
error in (no error) e €701 out

MT9810 Sensor Fetch.vi

In the explanation of parameters in this chapter, the wordsin the brackets ([1)
following the variable name indicate variable types.

11.4.1 Common Parameters

This section explains the input/output parameters used in most of the LabVIEW
drivers.

instr handle in [132]

A designator of MT9810 Gloval (global variable, one-dimensional array of clus-
ter) that stores the GPIB address, seria port number, and communication param-
eter setting. Initialize.vi does not contain this parameter.

instr handle out [132]
Outputs the value of Instr handlein. Close.vi does not contain this parameter.

error in [clust]
Outputs the error occurrence state before executing V1.

Status [DOOI] ... Indicates presence/absence of error.
"True" indicates the occurrence of an error.

€0de [132] .o Indicates the error code at the time of error
occurrence (when the status is set to True).

SOUFCE [S] v Indicates VI in which the error occurred.

error out [clust]
Outputsthe error occurrence status after executing V1. The contents of the cluster
are the same as those of error in.

Channel [132]
Indicates the unit channel number (V1 for unit only).

11-7

Section 11 LabVIEW Drivers

11.4.2 Description of functions

(1) Sample/utility VI

MT9810
MT9810 VI tree.vi VI Tree

All LabVIEW drivers are loaded on VI diagram. (Note that SubV1 is not in-
cluded) It can beused asalist.

MT9810

MT9810 Examplel.vi EXAMPL|
i B

A simple program example using the LabVIEW driver.

Takesin the display value of the optical sensor unit in theinterval set in Measure-
ment Interval and displaysit in the Reading display and in the chart. It setsand
executes the optical sensor channel and the GPIB/RS-232 controller. (The GPIB,
RS-232C parameter is placed at the right end of the window in a hidden manner)
The chart is cleared by pressing the clear button. To end the program, press the
Exit button.

MT9810

MT9810 Example2.vi EXAMPLE|
i B

A simple program example using the LabVIEW driver.

Displays the state of reference measurement. (Two optical sensor units are re-
quired) It sets and executes the GPIB/RS-232 controller. (The GPIB, RS-232C
parameter is placed at the left end of the window in ahidden manner) If thefetch
button is pressed after changing the optical sensor channel, Absolute Unit, Refer-
ence State, and Level Value arbitrarily, the measurement values and the reference
measurement values in Channels 1 and 2 are displayed. To end the program,
press the Exit button.

MT9810

MT9810 Example3.vi EXAMPLE|
P Ems

A simple program example using the LabVIEW driver.

Displays the maximum and minimum measurement values. It sets and executes
the optical sensor channel and the GPIB/RS-232 controller. (The GPIB, RS-
232C parameter is placed at the right end of the window in ahidden manner) The
maximum value, minimum value, the difference between the maximum and
minimum values, and elapsed time are displayed. The maximum and minimum
values are reset by pressing the Reset button. To end the program, press the Exit
button.

11-8

11.4 Description of LabVIEW Driver Functions

MT9810
MT9810 Interactive.vi

LabVIEW

This driver makes communication with the MT9810A in the device message
level. Set the GPIB/RS-232C and enter a device message of transmitting to the
MT9810A in either Write Buffer 1, 2, 3, or 4. Specify the Write Buffer number of
the device message to be actually sent with the switch and execute it. If aquery
command is sent, aresponse message is displayed in the Read Buffer.

MT9810

MT9810 Error Message.vi Error
Msg

This driver reports the error code and its detailed information. After executing
some LabVIEW driver Vs, execute this driver to check the error information

Parameter explanation
. type of dialog [int]ccc...... Select the style of the dialog to be dis-
played when an error occurs.
0: Thedialog is not displayed.
1: OK button dialog
2: Continuance and stop button dialog
. status [bool]ccoeveeeiie Trueif an error occurs.
. code [int] .ooovereireerceie The corresponding error code is output.
0 indicates that thereis no error
A negative code indicates that an error occurred.
A positive code indicate a warning.
. error message [Str] ...cocoeeeeene Outputs the explanation of the detected er-
ror.

(2) Main frame related VI

MT9810

s . Initialize
MT9810 Initialize(GPIB).vi (GPIB)

This driver makes preparation for starting communication with the measuring
instrument using GPIB.

Actual preparations are as follow:

1. Senddeviceclear.

2. Check the ID of the main frame. (there are choices)

3. Executereset (level 3). (there are choices)

4. Set the header of the response message to OFF.

Parameter explanation

. GPIB address[V8]ccceuee. GPIB address
. Reset [bo0l] ...c.ovevvveiiciicne Switching of reset operation.
. ID Query [bool]cccoevninne Switching of 1D check

11-9

Section 11 LabVIEW Drivers

MT9810

itiali i Initialize
MT9810 Initialize(RS232C).vi (RS232)

This driver makes preparation for starting communication with the measuring
instrument using RS-232C.

Actual preparations are as follow:

1. Settheseria port parameters.

2. Check the ID of the main frame. (selectable)

3. Executesreset (level 3). (selectable)

4. Set the header of the response message to OFF.

Parameter explanation
. RS-232C Parameter[clust] Serial port setting value
Port No. (0:COM1) [V8] Serial port number

baud rate (bps) [V16] Baud rate

stop bit [V16] ..ccocevrvviiienne Stop hit

parity bit [V16]cccovvirennne Parity bit
character (bit) [V16] Character length

. Reset [boal]cccc..e.. Switching of reset operation.
. ID Query [bool] Switching of 1D check

MT9810
MT9810 Reset.vi Reset
Thisdriver resets the main frame.
Parameter explanation
(None)

MT9810
MT9810 Self-Test.vi Self-Test

This driver makes internal self-test and returns the presence/absence of an error.
The test result is not output to the "error out" cluster.

Parameter explanation
. Self-test Error [bool] Trueif the test result is error.

11-10

11.4 Description of LabVIEW Driver Functions

MT9810
MT9810 Config Instrment.vi config

instr

Thisdriver sets/inquires the parameters (display ON/OFF, brightness, date, time,
buzzer level) of the main frame.

Parameter explanation
. Display Brightness[132] Display brightness setting

. Set Date [Clust]cvvveevreeeennne Date setting. Enter all values of Year,
Month, and Day.
Year [132]
Month [132]
Day [132]
. Set Time [clust]covevreennenene Time setting. Enter all values of Hours,
Minutes, and Seconds.
Hours [132]
Minutes [132]
Seconds [132]
. Beep Level [132]ccoooveennee Buzzer sound level setting

(3) Optical sensor unit related VI

MT9810
Sensor

MT9810 Config Sensor Zeroing.vi

Zero

This driver executes zero-set and outputs either normal end or error. After zero-
set operation is ended or after an error occurs, it ends V1. The error is output to
the "error out" cluster.

Parameter explanation
(None)

MT9810

Sensor

MT9810 Config Sensor_1.vi Config1

This driver sets/inquires the parameters (display unit system, calibration factor,
and modulation frequency).

Parameter explanation

. Absolute Units[132] Switching of display unit system.

. Calibration Factor [doubl€] ... Calibration factor

. Modulation Frequency [132] .. Modulation frequency setting value

11-11

Section 11 LabVIEW Drivers

MT9810

Sensor

MT9810 Config Sensor_2.vi Config2

Thisdriver sets/inquires the parameters (measurement interval, bandwidth, num-
ber of times of averaging).

Parameter explanation
. Measurement Interval [double] Measurement interval setting value. It
is rounded off to the resolution.

. Bandwidth [doubl€]coeuee. Bandwidth setting value
. Averaging Time[I32]cccceuee. Setting value of number of times of av-
eraging
MT9810
. . Sensor
MT9810 Config Sensor Wavelength.vi Wave
engt!

Thisdriver setsinquires the parameters (measurement wavelength).

Parameter explanation

. Wavelength Value [doubl€] ... Wavelength setting value. The setting
range and resolution of the wavelength are
dependent on the optical sensor unit. The
unit specified in Wavelength Unit is used.

. Wavelength Units [boal] Switching of the unit of wavelength

MT9810

Sensor

MT9810 Config Sensor Ranging.vi Range

This driver sets/inquires the measurement range.

Parameter explanation

. Power Range [I132] Power range setting value. Depending on
the optical sensor unit, some values cannot
be set.

11-12

11.4 Description of LabVIEW Driver Functions

MTS'9810
MT9810 Config Sensor Reference.vi Refor

ence

This driver sets/inquires the reference measurements (reference measurement
method, reference value) and executes/stops the reference measurement.

Parameter explanation

. Reference State [132] Switching of the reference measurement
method. "Reference to the other" is (mea-
surement value) — (measurement value of
other channel) — (referencevalue). "Refer-
ence to Value" is (measurement value) —
(reference value).

. Level Vaue [doublg] Reference value. The setting range differs
depending on the reference measurement
method. Theunit of the setting valueisde-
pendent on the display unit system. For
"Reference to the other,” specify in —
199.999 to 199.999 dB. For "Referenceto
Value," specify in 1E-16t0 99.999 W or in
—199.999 to 199.999 dBm.

MT9810

Sensor

MT9810 Sensor Fetch.vi Fetch

This driver inquires the measurement data. The data unit is dBm, W, dB, or %
depending on the display unit system or the reference setting.

Parameter explanation
. Reading [doubl€] Measurement value

MTS'9810
MT9810 Config Logging Parameters.vi LoRgZ?Egr
ea

Thisdriver executes/stop the logging. To execute the logging, set the number of
samples (the number of measurement data items).

Parameter explanation

. Start/Stop [bool]cccovevriennne Switching of logging execution/stop
. Number of Samples[132] Setting value of number of measurement
data items

11-13

Section 11 LabVIEW Drivers

MT9810
Sensor

MT9810 Read Logging Values.vi L%ggigg
eal

Thisdriver outputs the logging data.

Parameter explanation

. Number of Samples[132] Setting value of number of measure-
ment data items

. Number of Samplestaken [132] ... Number of data items read

. Result Array [double array] Measurement data (log value)

. Data[Str] .ccooveeeeeeeeeeeceesesceee Date identifier, unit model name, date
and time of measurement, number of
times of averaging, interval time, num-
ber of dataitems measured, data statis-
tics (maximum value (dBm), minimum
value (dBm), peak-to-peak value (dB),
average value (dBm)) are output as
shown below.

V1.0,"XXXXXXXXX;YY/MM/DD,hh:mm:ss; X XX; X XX; XXX; XXX,
XXX XXX XXX

MT9810
Sensor

MT9810 MinMax Values.vi Min "
lax

Thisdriver resets the measurement data of the maximum/minimum values or out-
puts the measurement data of the maximum/minimum value.

Parameter explanation

. Reset [DOO0I] ...ooveeieivieeerceee Switching of whether to reset the
maximum/minimum value
. Minimum [doubl€]c.cccovienns Minimum value measurement data

(dBm, W). No query is made if reset
operation is performed.

. Maximam [doubl€]ccoeuennns Maximum value measurement data
(dBm, W). No query is made if reset
operation is performed.

. Change in Power Level [double] ... The difference between the minimum
and maximum values. No query is
made if reset operation is performed.

11-14

11.4 Description of LabVIEW Driver Functions

(4) Light source unit related VI

MT9810

Source

MT9810 Config Source.vi Config

This driver setginquires the parameters (modulation frequency, attenuation, se-
lection and setting of wavelength)

Parameter explanation

. Frequency [132]ccoccovvviennne Modulation frequency setting value

. Attenuation Level [double] Attenuation setting value. The setting
range and setting resolution are dependent
on the light source unit.

. Wavelength Level [double] ... Wavelength setting value. For two wave-
length light source, selection of long wave
and short wave is made. The range and
resolution of wavelength are dependent on
the light source unit.

MT9810

Source
Output

MT9810 Config Source Output.vi

This driver turns ON/OFF the optical output.

Parameter explanation
. Source Output Signal State [bool] Switching of ON/OFF of optical
output

11-15

Section 11 LabVIEW Drivers

11-16.

/inritsu

MT9810B

Optical Test Set
Remote Control

Operation Manual

B Read this manual before using the equipment. Keep this manual with the equipment.

/Nritsu | wsi08 Optical Test Set Remote Control - Operation Manual

/inritsu

ANRITSU CORPORATION 5-10-27, Minamiazabu, Minato-ku, Tokyo 106-8570 Japan/Phone: 81-3-3446-1111

Document No.: M-W1887AE
Printed in Japan

	Cover
	About This Manual
	Table of Contents
	Section 1 Overview
	1.1 Overview
	1.2 Selecting the Interface Port
	1.3 Channel Numbers of the Unit

	Section 2 How to Connect
	2.1 Connecting Device Using a GPIB Cable
	2.1.1 Setting the Interface for the Connection Port
	2.1.2 Confirming and Setting the Address

	2.2 Connecting a Device Using an RS-232C Cable
	2.2.1 RS-232C Interface Signal Connection Diagrams
	2.2.2 Setting the Interface of the Connection Port
	2.2.3 Setting RS-232C Interface Conditions

	2.3 Default Value

	Section 3 Specifications
	3.1 GPIB Specifications
	3.2 RS-232C Specifications
	3.3 Device Message List
	3.3.1 IEEE 488.2 common commands and the commands supported by
the MT9810B
	3.3.2 Device Message List

	Section 4 Initial Setting
	4.1 Initialization of Bus by IFC Statement
	4.2 Initialization of Message Exchange by DCL and
SDC Bus Commands
	4.3 Initialization of Devices by *RST Command
	4.4 Device States at Power-ON
	4.4.1 Items not changes at Power-ON
	4.4.2 Items related to PSC flag
	4.4.3 Items that change at Power-ON

	Section 5 Listener Input Formats
	5.1 Summary of Listener Input Program Message Syn-tactical
Notation
	5.1.1 Separator, Terminator, and Space Before Header
	5.1.2 General Format of Program Command Message
	5.1.3 General Format of Query Message

	5.2 Program Message Functional Elements
	5.2.1 <TERMINATED PROGRAM MESSAGE>
	5.2.2 <PROGRAM MESSAGE TERMINATOR>
	5.2.3 <white space>
	5.2.4 <PROGRAM MESSAGE>
	5.2.5 <PROGRAM MESSAGE UNIT SEPARATOR>
	5.2.6 <PROGRAM MESSAGE UNIT>
	5.2.7 <COMMAND MESSAGE UNIT>/<QUERY MESSAGE UNIT>
	5.2.8 <COMMAND PROGRAM HEADER>
	5.2.9 <QUERY PROGRAM HEADER>
	5.2.10 <PROGRAM HEADER SEPARATOR>
	5.2.11 <PROGRAM DATA SEPARATOR>

	5.3 Program Data Format
	5.3.1 <CHARACTER PROGRAM DATA>
	5.3.2 <DECIMAL NUMERIC PROGRAM DATA>
	5.3.3 <SUFFIX PROGRAM DATA>
	5.3.4 <NON-DECIMAL NUMERIC PROGRAM DATA>
	5.3.5 <STRING PROGRAM DATA>
	5.3.6 <ARBITRARY BLOCK PROGRAM DATA>
	5.3.7 <EXPRESSION PROGRAM DATA>

	Section 6 Talker Output Format
	6.1 Differences in Syntax between Listener Input Formats and Talker Output formats
	6.2 Response Message Functional Elements
	6.2.1 <TERMINATED RESPONSE MESSAGE>
	6.2.2 <RESPONSE MESSAGE TERMINATOR>
	6.2.3 <RESPONSE MESSAGE>
	6.2.4 <RESPONSE MESSAGE UNIT SEPARATOR>
	6.2.5 <RESPONSE MESSAGE UNIT>
	6.2.6 <RESPONSE HEADER SEPARATOR>
	6.2.7 <RESPONSE DATA SEPARATOR>
	6.2.8 <RESPONSE HEADER>
	6.2.9 <RESPONSE DATA>

	Section 7 Common Commands
	7.1 Classification of Supported Commands and References

	Section 8 Status Structure
	8.1 IEEE 488.2 Standard Status Model
	8.2 Status Byte Register
	8.2.1 ESB and MAV Summary Message
	8.2.2 Device Dependent Summary Message
	8.2.3 Reading and Clearing the Status Byte Register

	8.3 Enabling the SRQ
	8.4 Standard Event Status Register
	8.4.1 Definition of Standard Event Status Register Bits
	8.4.2 Details on Query Errors
	8.4.3 Reading, Writing, and Clearing the Standard Event Status Register
	8.4.4 Reading, Writing, and Clearing the Standard Event Status Enable
Register

	8.5 Queue Model
	8.6 Extended Status Bytes
	8.6.1 Status register
	8.6.2 Operation Status Register
	8.6.3 QUESTIONABLE Status Register
	8.6.4 SOURCE status register

	Section 9 Details on Device Messages
	9.1 Main Frame
	9.1.1 DISPlay:BRIGhtness
	9.1.2 DISPlay[:STATe]
	9.1.3 SYSTem:BEEPer:STATe
	9.1.4 SYSTem:CHANnel:STATe
	9.1.5 SYSTem:COMMunicate:GPIB:HEAD
	9.1.6 SYSTem:COMMunicate:SERial:HEAD
	9.1.7 SYSTem:DATE
	9.1.8 SYSTem:ERRor
	9.1.9 SYSTem:TIME

	9.2 Optical Sensor
	9.2.1 ABORt[1|2]
	9.2.2 FETCh[1|2][:SCALar]:POWer[:DC]
	9.2.3 SENSe[1|2]:AVERage:COUNt
	9.2.4 SENSe[1|2]:BANDwidth
	9.2.5 SENSe[1|2]:BANDwidth:AUTO
	9.2.6 SENSe[1|2]:CORRection:COLLect:ZERO
	9.2.7 SENSe[1|2]:CORRection[:LOSS[:INPut[:MAGNitude]]]
	9.2.8 SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:MAXimum
	9.2.9 SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:MINimum
	9.2.10 SENSe[1|2]:FETCh[:SCALar]:POWer[:DC]:PTPeak
	9.2.11 SENSe[1|2]:FILTer:BPASs:FREQuency
	9.2.12 SENSe[1|2]:INITiate[:IMMediate]
	9.2.13 SENSe[1|2]:MEMory:COPY[:NAME]
	9.2.14 SENSe[1|2]:MEMory:DATa
	9.2.15 SENSe[1|2]:MEMory:DATa:INFO
	9.2.16 SENSe[1|2]:POWer:INTerval
	9.2.17 SENSe[1|2]:POWer:RANGe:AUTO
	9.2.18 SENSe[1|2]:POWer:RANGe[:UPPer]
	9.2.19 SENSe[1|2]:POWer:REFerence
	9.2.20 SENSe[1|2]:POWer:REFerence:DISPlay
	9.2.21 SENSe[1|2]:POWer:REFerence:STATe
	9.2.22 SENSe[1|2]:POWer:REFerence:STATe:RATio
	9.2.23 SENSe[1|2]:POWer:UNIT
	9.2.24 SENSe[1|2]:POWer:WAVelength
	9.2.25 SENSe[1|2]:POWer:WAVelength:UNIT
	9.2.26 SENSe[1|2]:TRIGger:COUNt
	9.2.27 SENSe[1|2]:TRIGger[:SEQuence][:IMMediate]
	9.2.28 READ[1|2]
	9.2.29 READ[1|2]:ABORt

	9.3 Light Source
	9.3.1 SOURce[1|2]:AM[:INTerval]:FREQuency
	9.3.2 SOURce[1|2]:MEMory:COPY[:NAME]
	9.3.3 SOURce[1|2]:POWer:ATTenuation
	9.3.4 SOURce[1|2]:POWer:STATe
	9.3.5 SOURce[1|2]:POWer:WAVelength
	9.3.6 SOURce[1|2]:POWer:WAVelength:UNIT

	9.4 Error Messages

	Section 10 Program Example
	10.1 Precaution on Programming
	10.2 Program Examples

	Section 11 LabVIEW Drivers
	About LabVIEW
	11.1 Installation
	11.2 Program Example
	11.3 List of LabVIEW Drivers
	11.4 Description of LabVIEW Driver Functions
	11.4.1 Common Parameters
	11.4.2 Description of functions

